f(x) 是定义在(0,+∞)上的非负可导函数,且满足xf(x)-f(x)≦0,对任意正数a,b,若a﹤b ,则必有(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:00:41
f(x) 是定义在(0,+∞)上的非负可导函数,且满足xf(x)-f(x)≦0,对任意正数a,b,若a﹤b ,则必有( )
A.af(a)≦bf(b) B.bf(b)≦af(a) C.af(a)≦f(b) D.bf(b)≦f(a)
A.af(a)≦bf(b) B.bf(b)≦af(a) C.af(a)≦f(b) D.bf(b)≦f(a)
没有一个答案是对的,证明如下:
由x(f(x)-f(x)≤0可知当x>1时,f(x)≤0,再由f(x)在定义内是非负可导函数知x≥1时,f(x)=0
仅仅能得到这么一个信息,显然当f(x)在区间[a,b]上导数足够小时(注意是负值),
可以满足af(a)≥bf(b) ,同样f(x)在区间[a,b]上导数为正时也可以满足bf(b≥af(a),从而A,B都是不一定的.显然当b=1时C是不成立的.如果f(a)足够小,b接近1,f(b)也够大的话,显然D也是不能够成立的.
由x(f(x)-f(x)≤0可知当x>1时,f(x)≤0,再由f(x)在定义内是非负可导函数知x≥1时,f(x)=0
仅仅能得到这么一个信息,显然当f(x)在区间[a,b]上导数足够小时(注意是负值),
可以满足af(a)≥bf(b) ,同样f(x)在区间[a,b]上导数为正时也可以满足bf(b≥af(a),从而A,B都是不一定的.显然当b=1时C是不成立的.如果f(a)足够小,b接近1,f(b)也够大的话,显然D也是不能够成立的.
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)≤0,对任意正数a,b,若a
f(x) 是定义在(0,+∞)上的非负可导函数,且满足xf(x)-f(x)≦0,对任意正数a,b,若a﹤b ,则必有(
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)≦0,对任意正数a、b,若a<b,则必有
f(x)是定义在(0,+∞)上的可导函数,且满足xf′(x)-f(x)>0,对任意的正数a、b,若a>b,则必有( )
已知f(x)是定义在(0,+∞)上的可导函数,且满足xf′(x)-f(x)≥0,对任意正数a,b,若a>b,则必有(
f(x)是定义在(0,正无穷)上的非负可导函数,且满足xf'(x)+f(x)小于等于0,对任意正数a,b,若a小于b,则
一道导数题,f(x)是定义在(0,正无穷大)上的非负可导函数,且满足xf'(x)+f(x)≤0.对任意正数a、b,若a<
有道函数填空题f(x)是定义在(0,正无穷)上的非负可导函数,且满足x*f ‘ (x)-f(x)≤0,对任意正数a、b,
定义在R上的函数f(x)满足f(0)=1,且对任意实数a,b有f(a-b)=f(a)-b(2a-b+1),求f(x)的解
设f(x)是定义在实数集R上的函数,满足f(0)=1,且对任意实数a、b,有f(a-b)=f(a)-b(2a-b+1),
已知f(x)是定义在实数集R上的函数,满足f(0)=1,q且对任意实数a,b,有f(a-b)=f(a)-b(2a-b+1
设f(x)是定义在实数集R上的函数,满足f(0)=1,且对任意实数a,b,有 f(a-b)=f(a)-b(2a-b+1)