数列{an}以1000为首项,公比为1/10的等比数列,数列{bn}满足bk=1/k(lga1+lga2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 21:42:53
数列{an}以1000为首项,公比为1/10的等比数列,数列{bn}满足bk=1/k(lga1+lga2
数列{an}是首项为1000,公比为1/10的等比数列,数列{bn}满足bk=1/k(lga1+lga2+…+lgak)(k∈N*)
1.求数列{bn}的前n项和的最大值. 2.求数列{∣bn∣}的前n项和Sn’
数列{an}是首项为1000,公比为1/10的等比数列,数列{bn}满足bk=1/k(lga1+lga2+…+lgak)(k∈N*)
1.求数列{bn}的前n项和的最大值. 2.求数列{∣bn∣}的前n项和Sn’
1.
an=a1q^(n-1)=1000×(1/10)^(n-1)=1/10^(n-4)
bk=(1/k)(lga1+lga2+...+lgak)
=(1/k)lg(a1×a2×...×ak)
=(1/k)lg[(1/10)^(1+2+...+k-4k)]
=-(1/k)lg[10^(k(k+1)/2-4k)]
=-(1/k)[k(k+1)/2 -4k]
=(7-k)/2
Sn=b1+b2+...+bn=(7/2)n -(1+2+...+n)/2
=(7/2)n-n(n+1)/4
=(-n²+13n)/4
=-(n-13/2)²/4 +169/16
当n=6、n=7时,-(n-13/2)²/4有最小值-1/16,此时Sn有最大值(Sn)max=21/2
2.
令bn≥0
(7-n)/2≥0
n≤7,即数列前7项均非负,从第8项开始,以后每一项均
an=a1q^(n-1)=1000×(1/10)^(n-1)=1/10^(n-4)
bk=(1/k)(lga1+lga2+...+lgak)
=(1/k)lg(a1×a2×...×ak)
=(1/k)lg[(1/10)^(1+2+...+k-4k)]
=-(1/k)lg[10^(k(k+1)/2-4k)]
=-(1/k)[k(k+1)/2 -4k]
=(7-k)/2
Sn=b1+b2+...+bn=(7/2)n -(1+2+...+n)/2
=(7/2)n-n(n+1)/4
=(-n²+13n)/4
=-(n-13/2)²/4 +169/16
当n=6、n=7时,-(n-13/2)²/4有最小值-1/16,此时Sn有最大值(Sn)max=21/2
2.
令bn≥0
(7-n)/2≥0
n≤7,即数列前7项均非负,从第8项开始,以后每一项均
数列{an}以1000为首项,公比为1/10的等比数列,数列{bn}满足bk=1/k(lga1+lga2
数列{an}是首项a1=100,公比q=1/10的等比数列,数列{bn}满足bn=1/n(lga1+lga2+...lg
已知数列{an}是一个以为公比Q(Q大于0),以为首项a1(a1大于0)的等比数列,求lga1+lga2+lga3+.+
已知数列an是一个以q为公比的等比数列,设bn=1/an,试用an.q表示数列bn的前n项之和Tn
设数列{an}是首项为1000,公比为十分之一的等比数列,数列{bn}满足
已知数列An是各项均为正数的等差数列,lga1,lga2,lga4成等差数列,又Bn=1/A(2^n),n=1,2,3,
数列{an}和{bn}满足a1=1 a2=2 an>0 bn=根号an*an+1且{bn}是以公比为q的等比数列
【高中数学】已知数列{an}是首项为a1= 1/4 ,公比q= 1/4 的等比数列,设数列{bn}满足bn+2=3log
已知数列{an}满足a1=1,a2=r(r>0),数列{bn}是公比为q的等比数列(q>0),bn=ana(n+1),c
已知数列{an}和{bn}满足:a1=1,a2=2,an>0,bn=根号anan+1,且{bn}是以q为公比的等比数列.
已知数列{an}和{bn}满足a1=1,a2=2,an>0,bn=√anan+1,且{bn}是以q为公比的等比数列
关于数列的2道题目1. 数列{an}是首项为1000,公比为1/10的等比数列,{an}是通项为bn=(1/n)(lga