椭圆与直线的位置关系过椭圆左焦点F且斜率为根号3的直线交椭圆于A、B两点,若FA=2FB,则椭圆离心率为?答案2/3,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 03:33:30
椭圆与直线的位置关系
过椭圆左焦点F且斜率为根号3的直线交椭圆于A、B两点,若FA=2FB,则椭圆离心率为?答案2/3,
过椭圆左焦点F且斜率为根号3的直线交椭圆于A、B两点,若FA=2FB,则椭圆离心率为?答案2/3,
方法一:A(x1,y1),B(x2,y2)由题:y1/y2=-2
-2-1/2=y1/y2+y2/y1=(y1平方+y2平方)/y1y2=(y1+y2)^2/y1y2-2
(y1+y2)^2/y1y2=-1/2
直线:x=√3/3y-c与椭圆联立化简得:(1/3a^2+1/b^2)y^2-2√3cy/3a^2+c^2/a^2-1=0
用韦达得e=2/3
方法二:分别从A、B向左准线作垂线AM、BN,垂足M、N,
∵倾斜角为60度,∴|AM|>|BN|,
作BH⊥AM,垂足H,
|AH|=|AM|-|BN|,
根据椭圆第二定义,|AF|/|AM|=e,
|BF|/|BN|=e,
|AF|/|BF|=|AM|/|BN|=2,
|MH|=|BN|,
|AM|=2|MH|,
∴H是AM的中点,
BH是AM的垂直平分线,
〈MAB=〈AFX=60°,
∴△AMB是正△,
|AB|=|AM|,
|AF|/|BF|=2,
|AF|/|AB|=2/3,
∴离心率e=|AF|/|AM|=|AF|/|AB|=2/3.,
参考:
设A和B在左准线上射影分别为C和D,|FB| = x,
然后作BT⊥AC于T,则有:|AT| = |AC| - |BD| = x/e
而|AB| = |AF| + |BF| = 3x,而在直角三角形ABT中有:
|AT| = |AB|cos 60°,即有x/e = 3x/2.
所以离心率e = 2/3.
-2-1/2=y1/y2+y2/y1=(y1平方+y2平方)/y1y2=(y1+y2)^2/y1y2-2
(y1+y2)^2/y1y2=-1/2
直线:x=√3/3y-c与椭圆联立化简得:(1/3a^2+1/b^2)y^2-2√3cy/3a^2+c^2/a^2-1=0
用韦达得e=2/3
方法二:分别从A、B向左准线作垂线AM、BN,垂足M、N,
∵倾斜角为60度,∴|AM|>|BN|,
作BH⊥AM,垂足H,
|AH|=|AM|-|BN|,
根据椭圆第二定义,|AF|/|AM|=e,
|BF|/|BN|=e,
|AF|/|BF|=|AM|/|BN|=2,
|MH|=|BN|,
|AM|=2|MH|,
∴H是AM的中点,
BH是AM的垂直平分线,
〈MAB=〈AFX=60°,
∴△AMB是正△,
|AB|=|AM|,
|AF|/|BF|=2,
|AF|/|AB|=2/3,
∴离心率e=|AF|/|AM|=|AF|/|AB|=2/3.,
参考:
设A和B在左准线上射影分别为C和D,|FB| = x,
然后作BT⊥AC于T,则有:|AT| = |AC| - |BD| = x/e
而|AB| = |AF| + |BF| = 3x,而在直角三角形ABT中有:
|AT| = |AB|cos 60°,即有x/e = 3x/2.
所以离心率e = 2/3.
椭圆与直线的位置关系过椭圆左焦点F且斜率为根号3的直线交椭圆于A、B两点,若FA=2FB,则椭圆离心率为?答案2/3,
过椭圆左焦点F且倾斜角为60°的直线交椭圆于A,B两点,若FA=2FB,求椭圆的离心率.
过椭圆的左焦点F且倾斜角为60度的直线交椭圆于A,B两点,若 FA=2FB ,则椭圆的离心率为_______
过椭圆左焦点F且倾斜角为60度的直线交椭圆于A、B两点,若|FA|=2|FB|,则椭圆的离心率为?
过椭圆左焦点F且倾斜角为60度的直线交椭圆于AB两点,若FA=1.5FB,则椭圆的离心率等于?
椭圆解题过椭圆左焦点F且倾斜角为60度的直线交椭圆于A\B两点,若FA长度=2FB长度,求椭圆的离心率.
过椭圆的左焦点F且倾斜角为60度,的直线交椭圆于A,B两点,若FA=2FB,则椭圆的离心律是多少?
过椭圆左焦点F,倾斜角为60°的直线交椭圆于A、B两点,若|FA|=2|FB|,则椭圆的离心率为( )
过椭圆左焦点F且倾斜角为60度,直线与椭圆相交于A,B两点,若|FA|等于2|FB|,求离心率
过椭圆左焦点F且倾斜角为度的直线交椭圆于A,B两点,若FA的模长等于FB模长的二倍,则椭圆的离心率是多少
过椭圆的左焦点F且倾斜角为60度的直线交椭圆于AB两点,若/FA/=2/FB/,离心率为2/3,如果/AB/=15/4,
过椭圆的右焦点F作倾斜角为120的直线,交椭圆于A,B两点,且FA=2FB,则椭圆的离心率是多少