如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 21:08:51
如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)①当AB=10,BC=8时,求BD的长.
②若BC与AE相交于G,求GF的长.
图发不上去。%>_
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)①当AB=10,BC=8时,求BD的长.
②若BC与AE相交于G,求GF的长.
图发不上去。%>_
(1)证明:连接AC,
∵AB是⊙O的直径
∴∠ACB=90°
又∵OD⊥BC
∴AC∥OE
∴∠CAB=∠EOB
由 AC^对的圆周角相等
∴∠AEC=∠ABC
又∵∠AEC=∠ODB
∴∠ODB=∠OBC
∴△DBF∽△OBD
∴∠OBD=90°
即BD⊥AB
又∵AB是直径
∴BD是⊙O的切线.
(2)∵OD⊥弦BC于点F,且点O为原点
∴BF=FC
∴BF=4
由题意OB是半径即为5
∴在直角三角形OBF中OF为3
由以上(1)得到△OBF∽△OBD
∴ BD/BF=OB/OF
即得BD= 20/3.
(3)
连结BE
∵AB为直径
∴∠AEB=90°
∵OD⊥BC
∴△BFE∽△EFG
∵BF=4
FE=5-3=2
∴GF=1
∵AB是⊙O的直径
∴∠ACB=90°
又∵OD⊥BC
∴AC∥OE
∴∠CAB=∠EOB
由 AC^对的圆周角相等
∴∠AEC=∠ABC
又∵∠AEC=∠ODB
∴∠ODB=∠OBC
∴△DBF∽△OBD
∴∠OBD=90°
即BD⊥AB
又∵AB是直径
∴BD是⊙O的切线.
(2)∵OD⊥弦BC于点F,且点O为原点
∴BF=FC
∴BF=4
由题意OB是半径即为5
∴在直角三角形OBF中OF为3
由以上(1)得到△OBF∽△OBD
∴ BD/BF=OB/OF
即得BD= 20/3.
(3)
连结BE
∵AB为直径
∴∠AEB=90°
∵OD⊥BC
∴△BFE∽△EFG
∵BF=4
FE=5-3=2
∴GF=1
如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,若∠AEC=∠ODB.
如图所示,AB是⊙O直径,OD过弦BC的中点F,且交⊙O于点E,若∠AEC=∠ODB,求证直线BD和⊙0相切
AB是圆O的直径,OD垂直于弦BC于点F,且交圆O于点E,bd与圆o相切.若∠AEC=∠ODB.当ab=10,bc=8时
如图,AB是圆O直径,OD垂直弦BC于点F,且交圆O于点E,若∠AEC=∠ODB.判断直线BD和圆O的位置关系,并给出证
如图,AB为圆O的直径,CD与圆O相切于点C,且OD垂直BC,垂直为F,OD交圆O于点E,求证1.角D等于角AEC&nb
已知,如图,ab为⊙o的直径,dc切⊙o于点c,且od⊥bc于f,od交⊙o于点e,连接be,ce,ae.(1)求证:b
如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F
AB是圆O的直径,BC为弦,OD⊥CB于点E,交BCfu于点D
如图,AB是⊙O的直径,AD与⊙O相切于点A,过B点作BC∥OD交⊙O于点C,连接OC、AC,AC交OD于点E.
如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.
如图,已知AB是⊙O的直径,过⊙O上的点C的切线交AB的延长线于E,AD⊥EC于D且交⊙O于F.连接BC,CF,AC.
如图,△ABC中,以BC为直径的⊙O交AB于点D,CA是⊙O的切线,AE平分∠BAC交BC于点E,交CD于点F.