作业帮 > 数学 > 作业

是否存在实数k,使关于x的方程9x^2-(4k-7)x-6k^2=0的两个实数根x1、x2满足︳x1/x2︱=3/2,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 23:59:00
是否存在实数k,使关于x的方程9x^2-(4k-7)x-6k^2=0的两个实数根x1、x2满足︳x1/x2︱=3/2,
如果存在,试求出所有满足条件的k的值,如果不存在,请说明理由.
是否存在实数k,使关于x的方程9x^2-(4k-7)x-6k^2=0的两个实数根x1、x2满足︳x1/x2︱=3/2,
△=(4k-7)^-4*9*(-6K^)>0 则有(4k-7)^+216K^>0
韦达定理
x1+x2=(4k-7)/9
x1*x2=-(6k^2)/9 小于零,必定一根大于0,一根小于0
假设x1>0 则x2