作业帮 > 数学 > 作业

·已知两圆C1:x^2+y^2=4,C2:x^2+y^2-2x-4y+4=0,L:x+2y=0,求经过圆C1和C2的交点

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 12:31:33
·已知两圆C1:x^2+y^2=4,C2:x^2+y^2-2x-4y+4=0,L:x+2y=0,求经过圆C1和C2的交点且和直线L相切的圆的方程
谢拉
·已知两圆C1:x^2+y^2=4,C2:x^2+y^2-2x-4y+4=0,L:x+2y=0,求经过圆C1和C2的交点
设所求圆的方程为
x^2+y^2-4+k(x^2+y^2-2x-4y+4)=0
再与L方程联立得:
(5+5k)y^2=4-4k
故k=1(保证y只有一个解)
因此所求圆的方程为
x^2+y^2-4+(x^2+y^2-2x-4y+4)=0
化简为
x^2+y^2-x-2y=0