已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,3)且g(x)=f(x-1),则f(2007)+
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 13:07:03
已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,3)且g(x)=f(x-1),则f(2007)+f(2008)=______.
∵f(x)为R上的偶函数,∴f(-x)=f(x)
∵g(x)为R上的奇函数,∴g(-x)=-g(x)
∵g(x)=f(x-1)
⇒g(-x)=f(-x-1)
⇒-g(x)=f(-x-1)
⇒g(x)=-f(-x-1)
∴f(x-1)=-f(-x-1)
令-x-1=t,则:x=-t-1
∴f(-t-2)=-f(t)…(1)
再令-t-2=u,则-u=t+2
而偶函数f(x)满足f(u)=f(-u)
即,f(-t-2)=f(t+2)…(2)
由(1)(2)得到:f(-t-2)=-f(t)=f(t+2)
∴f(t+2)=-f(t)…(3)
∴f[(t+2)+2]=-f(t+2)=-[-f(t)]=f(t)
即,f(t+4)=f(t)
∴偶函数f(x)也是以4为周期的周期函数
f(2007)=f(3+4×501)=f(3)
f(2008)=f(0+4×502)=f(0)
由(3)得到,f(3)=-f(1)
∴f(2007)+f(2008)=f(3)+f(0)=-f(1)+f(0)
而,g(x)=f(x-1)
令x=0,那么:g(0)=f(0-1)=f(-1)=f(1)
所以,-f(1)=0
令x=1,那么:g(1)=f(1-1)=f(0)
所以,f(2007)+f(2008)=-g(0)+g(1)
因为在R上的奇函数g(x)必定满足:g(-x)=-g(x)
即,g(x)+g(-x)=0
所以,g(0)+g(-0)=0
则,g(0)=0
已知g(x)过点(-1,3),即:g(-1)=3
所以:g(1)=-g(-1)=-3
综上:f(2007)+f(2008)=-3
故答案为-3.
∵g(x)为R上的奇函数,∴g(-x)=-g(x)
∵g(x)=f(x-1)
⇒g(-x)=f(-x-1)
⇒-g(x)=f(-x-1)
⇒g(x)=-f(-x-1)
∴f(x-1)=-f(-x-1)
令-x-1=t,则:x=-t-1
∴f(-t-2)=-f(t)…(1)
再令-t-2=u,则-u=t+2
而偶函数f(x)满足f(u)=f(-u)
即,f(-t-2)=f(t+2)…(2)
由(1)(2)得到:f(-t-2)=-f(t)=f(t+2)
∴f(t+2)=-f(t)…(3)
∴f[(t+2)+2]=-f(t+2)=-[-f(t)]=f(t)
即,f(t+4)=f(t)
∴偶函数f(x)也是以4为周期的周期函数
f(2007)=f(3+4×501)=f(3)
f(2008)=f(0+4×502)=f(0)
由(3)得到,f(3)=-f(1)
∴f(2007)+f(2008)=f(3)+f(0)=-f(1)+f(0)
而,g(x)=f(x-1)
令x=0,那么:g(0)=f(0-1)=f(-1)=f(1)
所以,-f(1)=0
令x=1,那么:g(1)=f(1-1)=f(0)
所以,f(2007)+f(2008)=-g(0)+g(1)
因为在R上的奇函数g(x)必定满足:g(-x)=-g(x)
即,g(x)+g(-x)=0
所以,g(0)+g(-0)=0
则,g(0)=0
已知g(x)过点(-1,3),即:g(-1)=3
所以:g(1)=-g(-1)=-3
综上:f(2007)+f(2008)=-3
故答案为-3.
已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,3)且g(x)=f(x-1),则f(2007)+
已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,1),且g(x)=f(x-1),则f(2007)
已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,1)且g(x)=f(x-1),则f(2007)+
已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,3)且g(x)=f(x-1),则f(2009)+
已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,1)且g(x)=f(x-1),则f(2007)+
已知f(x)是定义在R上的偶函数,g(x)是定义在R上的奇函数,且g(x)=f(x-1),则f(2013)+f(2015
已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)过点(-1,1)
已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x^3+x^2+1,则f(1)+g(1)=
设f(x)是定义在R上的奇函数,函数y=g(x)是R上的偶函数,且f(x)+g(x)=x²+3x+1,求f(x
已知f(x)是定义域在R上的偶函数,定义在R上的奇函数g(x)过点(1,3)且fg(x)=f(x-1),则f(2007)
已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=
已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=__