八上数学题(函数)如图已知AB=2,AD=4,∠BAD=90°,AD‖BC,E是射线BC上动点(点E与点B不重合),M是
八上数学题(函数)如图已知AB=2,AD=4,∠BAD=90°,AD‖BC,E是射线BC上动点(点E与点B不重合),M是
已知:如图,在梯形ABCD中,AD‖BC,∠DCB=90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与
已知:如图,在梯形ABCD中,AD‖BC,∠DCB=90°,E是AD的中点,点P事BC边上的动点(不与点B重合),EP与
如图,在等腰梯形ABCD中,AD平行BC,AD=2,AB=5,sin角B=3比5,点E是边BC上的动点(不与B,C重合)
如图,平行四边形ABCD中,AB=4,BC=3,∠BAD=120°,E为BC上一动点(不与B重合)
如图,已知▱ABCD中,AB=4,AD=2,E是AB边上的一动点(动点E与点A不重合,可与点B重合),设AE=x,DE的
如图甲,已知∠ABC=90°,△ABD是边长为2的等边三角形,点E为射线BC上任意一点(点E与点B不重合),连结AE,在
如图,在矩形ABCD中,AB=3cm,AD=4cm,点E是BC上一动点(不与B、C重合),且DF⊥AE,垂足为F. 设A
已知:如图,等腰梯形ABCD中,AD∥BC,AB=DC,点P是腰DC上的一个动点(P与D、C不重合),点E、F、G分别是
如图,已知AB⊥BC于点B,E是BC上的一点,AE平分∠BAD,DE平分∠ADC,∠DAE+∠ADE=90°,求证AD⊥
如图,等腰梯形ABCD中,AD‖BC,AB=DC,点P是腰DC上的一个动点(P与QD、C不重合),点E、F、G分别是线段
已知:四边形ABCD中,AD∥BC,AB=AD=DC,∠BAD=∠ADC,点E在CD边上运动(点E与点C、D两点不重合)