设A为定圆外一定点,P为定圆上一定点,由点A向定圆引任一割线ABC.若PB、PC的中点分别为M、N,求证:直线MN恒过一
设A为定圆外一定点,P为定圆上一定点,由点A向定圆引任一割线ABC.若PB、PC的中点分别为M、N,求证:直线MN恒过一
设P是直线l:2x+y+9=0上的任一点,过点P作圆x2+y2=9的两条切线PA、PB,切点分别为A、B,则直线AB恒过
P ABCD ABCD为平行四边形 N为PB中点 过A N D 三点的平面交PC 于M
如图,p为△ABC所在平面外一点,PA=PB,BC⊥平面PAB,M为PC的中点,N为AB上的点,且AN=3BN,求证:A
设P为边长为1的等边△ABC内任一点,且l=PA+PB+PC,求证根号3≤l
1,在△ABC中,D,G分别为AB,AC上的点,且DB=CG,M,N分别是BG,CD的中点,过MN的直线交AB于P,交A
如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交A
如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交A
如图:----A----M----P--N--B---- 直线上AB有一点,点M,N分别为线段PA,PB的中点,AB=1
已知圆O的半径为R,点P是一定点,过点P的一条直线交圆O于A,B两点,求证:PA乘PB等于|OP的平方减R的平方|
在三棱锥P-ABC中,PA⊥平面ABC,△ABC为直角三角形,AB⊥BC,过点A作AM⊥PB于M,作AN⊥PC于N.求证
如图所示,AM为△ABC的中线,任意一直线交AB、AC、AM与点P、Q、N,求证:PB/PA+QC/QA=2*MN/NA