证明 若图中只有两个奇数度顶点 则两顶点必连通
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 10:14:17
证明 若图中只有两个奇数度顶点 则两顶点必连通
怎样证明·~
怎样证明·~
对于一笔画问题,有两个判断的准则,它们都由欧拉提出并证明[1].
定理一
有限图 G 是链或圈的充要条件是:G为连通图,且其中奇顶点的数目等于0或者2.有限连通图 G 是圈当且仅当它没有奇顶点.
证明:
* 必要性:如果一个图能一笔画成,那么对每一个顶点,要么路径中“进入”这个点的边数等于“离开”这个点的边数:这时点的度为偶数.要么两者相差一:这时这个点必然是起点或终点之一.注意到有起点就必然有终点,因此奇顶点的数目要么是0,要么是2.
* 充分性:
1.如果图中没有奇顶点,那么随便选一个点出发,连一个圈 C1.如果这个圈就是原图,那么结束.如果不是,那么由于原图是连通的,C1 和原图的其它部分必然有公共顶点 s1.从这一点出发,在原图的剩余部分中重复上述步骤.由于原图是有限图,经过若干步后,全图被分为一些圈.由于两个相连的圈就是一个圈,原来的图也就是一个圈了.
2.如果图中有两个奇顶点 u 和 v,那么加多一条边将它们连上后得到一个无奇顶点的有限连通图.由上知这个图是一个圈,因此去掉新加的边后成为一条链,起点和终点是 u 和 v.
定理二
如果有限连通图 G 有 2k 个奇顶点,那么它可以用 k 笔画成,并且至少要用 k 笔画成.
证明:将这 2k 个奇顶点分成 k 对后分别连起,则得到一个无奇顶点的有限连通图.由上知这个图是一个圈,因此去掉新加的边后至多成为 k 条链,因此必然可以用 k 笔画成.但是假设全图可以分为 q 条链,则由定理一知,每条链中只有两个奇顶点,于是 2q \ge 2k.因此必定要 k 笔画成.
定理一
有限图 G 是链或圈的充要条件是:G为连通图,且其中奇顶点的数目等于0或者2.有限连通图 G 是圈当且仅当它没有奇顶点.
证明:
* 必要性:如果一个图能一笔画成,那么对每一个顶点,要么路径中“进入”这个点的边数等于“离开”这个点的边数:这时点的度为偶数.要么两者相差一:这时这个点必然是起点或终点之一.注意到有起点就必然有终点,因此奇顶点的数目要么是0,要么是2.
* 充分性:
1.如果图中没有奇顶点,那么随便选一个点出发,连一个圈 C1.如果这个圈就是原图,那么结束.如果不是,那么由于原图是连通的,C1 和原图的其它部分必然有公共顶点 s1.从这一点出发,在原图的剩余部分中重复上述步骤.由于原图是有限图,经过若干步后,全图被分为一些圈.由于两个相连的圈就是一个圈,原来的图也就是一个圈了.
2.如果图中有两个奇顶点 u 和 v,那么加多一条边将它们连上后得到一个无奇顶点的有限连通图.由上知这个图是一个圈,因此去掉新加的边后成为一条链,起点和终点是 u 和 v.
定理二
如果有限连通图 G 有 2k 个奇顶点,那么它可以用 k 笔画成,并且至少要用 k 笔画成.
证明:将这 2k 个奇顶点分成 k 对后分别连起,则得到一个无奇顶点的有限连通图.由上知这个图是一个圈,因此去掉新加的边后至多成为 k 条链,因此必然可以用 k 笔画成.但是假设全图可以分为 q 条链,则由定理一知,每条链中只有两个奇顶点,于是 2q \ge 2k.因此必定要 k 笔画成.
证明 若图中只有两个奇数度顶点 则两顶点必连通
一个顶点是不是强连通分量?
设无向连通图G有n个顶点,证明G至少有(n-1)条边.
证明:若G是一个具有奇数顶点的二分图,则G中没有Hamilton圈
无向图G=,且|V|=n,|e|=m,试证明以下两个命题是等价命题:G中每对顶点间具有唯一的通路,G连通且n=m+1
求解离散数学题目:假设一条带有m条边,n个顶点的连通平面性简单图不包含长度不大于3回路.证明:则m小于等于2n-4
图论:证明若G为简单连通图,且G中任意一对不相邻顶点u和v满足d(u)+d(v)>=n-1,则G有Hamilton路.
关于强连通分支为什么这张图里的顶点a和e也是强连通分支?单独的顶点为什么也可以是强连通分支
对于一个非连通无向图,共有28条边,则该图至少有多少个顶点?
maya两个图型中的两顶点如何合并
一棵无向树有两个2度顶点,一个3度顶点,三个4度顶点,则它的树叶数为
二次函数顶点式证明