设无向连通图G有n个顶点,证明G至少有(n-1)条边.
设无向连通图G有n个顶点,证明G至少有(n-1)条边.
G是一个具有n个结点的无向连通图,证明G至少有n-1条边,并证明具有n-1条边的无向连通图是一棵树
设一个无向图G=(V,E)有n个顶点n+1条边,证明G中至少有一个顶点的度数大于或等于3.
若G是一个具有36条边的非连通无向图(没有自回路和多重边),则G至少有____个顶点?
简单图G有n个结点,e条边,设e>(n-1)(n-2)/2,证明G是连通的
设G是有n个结点n条边的简单连通图,且G中存在度数为3的结点,证明G中至少有一个度数为1的结点
设G是n阶m条的无向连通图,证明m>=n-1
连通无向图G有k个奇顶点,如果把G变成无奇顶点的图,则在G中至少需要 加___ ___条边
1.证明在具有n个顶点的简单无向图G中,至少有两个顶点的度数相同.
G 是有 n-1 条边的图(n 是 G 的顶点数).证明:如果 G 中无圈,那么G 是一棵树.分可加.
对于一个非连通无向图,共有28条边,则该图至少有多少个顶点?
无向图G=,且|V|=n,|e|=m,试证明以下两个命题是等价命题:G中每对顶点间具有唯一的通路,G连通且n=m+1