已知平行六面体ABCD-A1B1C1D1同一顶点A为端点 的三条棱都等于1且彼此夹角为60度球AC1的长
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 09:00:19
已知平行六面体ABCD-A1B1C1D1同一顶点A为端点 的三条棱都等于1且彼此夹角为60度球AC1的长
答案是√6,能说说怎末做的啊
答案是√6,能说说怎末做的啊
∵∠DAB=60°,∴∠ABC=120˚;
于是AC²=AB²+BC²-2AB*BCcos120˚=2+2cos60˚=3
在平面AA1B1B内作A1E⊥AB,则A1E=AA1sin60˚=√3/2.
在对角面ACC1A1内作A1F⊥AC,∵对角面ACC1A1⊥底面ABCD,
AC是它们的交线,因此A1F⊥底面ABCD,连EF,按三垂线定理,
AF⊥EF.
A1E=A1Asin60°=√3/2.
AE=A1Acos60°=1/2.
EF=AEtan30°=(1/2)(√3/3)=√3/6.
∴A1F=√(A1E²-EF²)=√[(√3/2)²-(√3/6)²]=√(2/3).
于是sin∠A1AF=A1F/A1A=√(2/3).
cos∠A1AF=√(1-2/3)=√(1/3).
cos∠ACC1=cos(180˚-∠ACC1)=-cos∠ACC1=-√(1/3).
∴AC1=√[AC²+C1C²-2AC*C1C*cos∠ACC1]
=√[3+1+2(√3)√(1/3)]=√6.
于是AC²=AB²+BC²-2AB*BCcos120˚=2+2cos60˚=3
在平面AA1B1B内作A1E⊥AB,则A1E=AA1sin60˚=√3/2.
在对角面ACC1A1内作A1F⊥AC,∵对角面ACC1A1⊥底面ABCD,
AC是它们的交线,因此A1F⊥底面ABCD,连EF,按三垂线定理,
AF⊥EF.
A1E=A1Asin60°=√3/2.
AE=A1Acos60°=1/2.
EF=AEtan30°=(1/2)(√3/3)=√3/6.
∴A1F=√(A1E²-EF²)=√[(√3/2)²-(√3/6)²]=√(2/3).
于是sin∠A1AF=A1F/A1A=√(2/3).
cos∠A1AF=√(1-2/3)=√(1/3).
cos∠ACC1=cos(180˚-∠ACC1)=-cos∠ACC1=-√(1/3).
∴AC1=√[AC²+C1C²-2AC*C1C*cos∠ACC1]
=√[3+1+2(√3)√(1/3)]=√6.
已知平行六面体ABCD-A1B1C1D1同一顶点A为端点 的三条棱都等于1且彼此夹角为60度球AC1的长
一道数学高中选修题已知平行六面体ABCD-A1B1C1D1的顶点A为端点的三条棱都等于1,且彼此的夹角都等于60度,则对
有关空间向量的已知平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都是1,切两两夹角为60°,求AC1的
一道空间几何体在平行六面体ABCD—A1B1C1D1中 ,以顶点A为端点的三条棱长都是1且两两夹角都是60°,则AC1与
已知平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都等于1,且两两夹角为60度.
在平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都是1且夹角都是60°,求相对的面AD1与BC1的距离
在平行六面体ABCD-A'B'C'D'中,以顶点A为端点的三条棱长都等于1,且它们彼此都等于60度
平行六面体ABCD- A1B1C1D1,以A为顶点的三边为1,角A1AB=角A1AD=角DAB等于60度,求对角线AC1
高二空间向量:在平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都是1
已知正方体ABCD—A1B1C1D1棱长为a,求对角线AC1的长
已知平行六面体ABCD—A1B1C1D1的所有棱长都是1,且∠A1AB=∠A1AD=∠BAD=60°,E、F分别为A1B
在平行六面体ABCD-A1B1C1D1中,AB,AA1,AD两两夹角均为60度,且a=