一道空间几何体在平行六面体ABCD—A1B1C1D1中 ,以顶点A为端点的三条棱长都是1且两两夹角都是60°,则AC1与
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 16:59:55
一道空间几何体
在平行六面体ABCD—A1B1C1D1中 ,以顶点A为端点的三条棱长都是1且两两夹角都是60°,则AC1与平面ABCD所成角的余弦值是多少
答案是2/3
在平行六面体ABCD—A1B1C1D1中 ,以顶点A为端点的三条棱长都是1且两两夹角都是60°,则AC1与平面ABCD所成角的余弦值是多少
答案是2/3
根据已知,以顶点A为端点的三条棱长都是1且两两夹角都是60°,所以六面体的12条边边长均为1.同时六个面都是菱形.这是由已知知道的.
另外,连接AC,A1C1,可以证明平面AA1C1C是与平面ABCD垂直的(由对称性也可以看出来,想具体证明的话自己试试).这样AC1与平面ABCD所成角即为∠CAC1.
这时,我们只用研究就行了.
首先AC=根3 .CC1=1
先求∠ACC1.为直观,可以先求.已知有个条件,顶点A为端点的三条棱长都是1且两两夹角都是60°,如果从A1分别往AC和AD1做垂线,就可以很容易解出.sin∠A1AC=√11/4
所以cos∠ACC1=-√5/4,
在△ACC1根据余弦定理,可以求出AC1=√(4+√15/2)
再用余弦定理求出cos∠CAC1=(√3+√5/2)/√(4+√15/2)
另外,连接AC,A1C1,可以证明平面AA1C1C是与平面ABCD垂直的(由对称性也可以看出来,想具体证明的话自己试试).这样AC1与平面ABCD所成角即为∠CAC1.
这时,我们只用研究就行了.
首先AC=根3 .CC1=1
先求∠ACC1.为直观,可以先求.已知有个条件,顶点A为端点的三条棱长都是1且两两夹角都是60°,如果从A1分别往AC和AD1做垂线,就可以很容易解出.sin∠A1AC=√11/4
所以cos∠ACC1=-√5/4,
在△ACC1根据余弦定理,可以求出AC1=√(4+√15/2)
再用余弦定理求出cos∠CAC1=(√3+√5/2)/√(4+√15/2)
一道空间几何体在平行六面体ABCD—A1B1C1D1中 ,以顶点A为端点的三条棱长都是1且两两夹角都是60°,则AC1与
有关空间向量的已知平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都是1,切两两夹角为60°,求AC1的
在平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都是1且夹角都是60°,求相对的面AD1与BC1的距离
高二空间向量:在平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都是1
已知平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都等于1,且两两夹角为60度.
已知平行六面体ABCD-A1B1C1D1同一顶点A为端点 的三条棱都等于1且彼此夹角为60度球AC1的长
一道数学高中选修题已知平行六面体ABCD-A1B1C1D1的顶点A为端点的三条棱都等于1,且彼此的夹角都等于60度,则对
在平行六面体ABCD-A1B1C1D1中,AB,AA1,AD两两夹角均为60度,且a=
一道数学空间几何题所有棱长都是a 的四棱柱ABCD-A1B1C1D1,对角线AC1,BD1,B1D两两垂直,则侧棱与底面
在平行六面体ABCD-A'B'C'D'中,以顶点A为端点的三条棱长都等于1,且它们彼此都等于60度
平行六面体ABCD- A1B1C1D1,以A为顶点的三边为1,角A1AB=角A1AD=角DAB等于60度,求对角线AC1
空间向量与立体几何在平行六面体ABCD-A'B'C'D'中,AB=2,AA'=2,AD=1,且AB.AD.AA'夹角都是