作业帮 > 数学 > 作业

一道空间几何体在平行六面体ABCD—A1B1C1D1中 ,以顶点A为端点的三条棱长都是1且两两夹角都是60°,则AC1与

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 16:59:55
一道空间几何体
在平行六面体ABCD—A1B1C1D1中 ,以顶点A为端点的三条棱长都是1且两两夹角都是60°,则AC1与平面ABCD所成角的余弦值是多少
答案是2/3
一道空间几何体在平行六面体ABCD—A1B1C1D1中 ,以顶点A为端点的三条棱长都是1且两两夹角都是60°,则AC1与
根据已知,以顶点A为端点的三条棱长都是1且两两夹角都是60°,所以六面体的12条边边长均为1.同时六个面都是菱形.这是由已知知道的.
另外,连接AC,A1C1,可以证明平面AA1C1C是与平面ABCD垂直的(由对称性也可以看出来,想具体证明的话自己试试).这样AC1与平面ABCD所成角即为∠CAC1.
这时,我们只用研究就行了.
首先AC=根3 .CC1=1
先求∠ACC1.为直观,可以先求.已知有个条件,顶点A为端点的三条棱长都是1且两两夹角都是60°,如果从A1分别往AC和AD1做垂线,就可以很容易解出.sin∠A1AC=√11/4
所以cos∠ACC1=-√5/4,
在△ACC1根据余弦定理,可以求出AC1=√(4+√15/2)
再用余弦定理求出cos∠CAC1=(√3+√5/2)/√(4+√15/2)