已知向量a=(cosα,sinα),b=(2cosβ,2sinβ),若实数k使|ka+b|=|a-kb|成立,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:03:50
已知向量a=(cosα,sinα),b=(2cosβ,2sinβ),若实数k使|ka+b|=|a-kb|成立,
求满足不等式 a乘b≥0的k的取值范围.
求满足不等式 a乘b≥0的k的取值范围.
|ka+b|=|a-kb|
即|(kcosα,ksinα)+(2cosβ,2sinβ)|=|(cosα,sinα)-(2kcosβ,2ksinβ)|
k^2+4+4kcos(α-β)=1+4k^2-4kcos(α-β)
cos(α-β)=3(k^2-1)/(8k)
要使 a*b=2cos(α-β)>=0
只需 3(k^2-1)/4k>=0
即 k>0
即|(kcosα,ksinα)+(2cosβ,2sinβ)|=|(cosα,sinα)-(2kcosβ,2ksinβ)|
k^2+4+4kcos(α-β)=1+4k^2-4kcos(α-β)
cos(α-β)=3(k^2-1)/(8k)
要使 a*b=2cos(α-β)>=0
只需 3(k^2-1)/4k>=0
即 k>0
已知向量a=(cosα,sinα),b=(2cosβ,2sinβ),若实数k使|ka+b|=|a-kb|成立,
有关向量的计算已知向量a=(cosα,sinα),b=(2cosβ,2sinβ),若实数k使|ka+b|=|a-kb|成
已知向量a=(cosα,sinα),b=(cosβ,sinβ),且a,b满足关系式|ka+b|=√3|a-kb|,(k>
已知向量a={cosα,sinα},b={cosβ,sinβ},且满足{ka+b}=根号3{a-kb}(k>0)
已知向量a=(cosα,sinα),向量b=(cosβ,sinβ),且|ka+b|=根号3|a-kb|.
已知向量a=(cosα,sinα) b=(cosβ,sinβ)且a ,b满足│ka+b│=根号3│a-kb│(k>0)
已知向量a=(cosa,sina),b=(cosβ,sinβ),且a,b满足关系式|ka+b|=根号3 |a-kb|(k
已知向量a=(cosα,sinα),向量b=(cosβ,sinβ),其中0<α<β<π 若ka+b与a-kb的长度相等,
设向量a=(cosα,sinα),b=(cosβ,sinβ),且a和b满足条件丨ka+b丨=根号丨a-kb丨(其中k>0
已知向量a=(cosα,sinα),b=(cosβ,sinβ),且a与b之间满足关系:|ka+b|=√3|a-kb|,其
已知向量a=(cosα,sinα) b=(cosβ,sinβ) |a+b|=2|a-b|
已知向量a=(cosα,sinα),b=(cosβ,sinβ)(0<α<β<π),且ka+b于a-kb的长度相等,求β-