设函数f(x)=ax³+bx²+cx+d(a,b,c,d∈R),对任意的实数x,有3f'(x)+2f
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 00:12:29
设函数f(x)=ax³+bx²+cx+d(a,b,c,d∈R),对任意的实数x,有3f'(x)+2f'(-x)=5x²-2x-15恒成立,且f(0)=2.1、求f(x)的表达式2、设g(x)=2mf'(x)+(6m-8)x+6m+1,h(x)=mx,若对于任意x,g(x)和h(x)的值至少有一个正解,求实数m的取值范围
1.f(0)=2,则 d=2,又
f'(x)=3ax^2+2bx+c
f'(-x)=3ax^2-2bx+c
9ax^2+6bx+3c+6ax^2-4bx+2c=15ax^2+2bx+5c=5x²-2x-15恒成立
即15a=5,2b=-2,5c=-15,则,a=1/3,b=-1,c=-3
所以f(x)=1/3x^3-x^2-3x+2.
2.g(x)=2mf'(x)+(6m-8)x+6m+1,h(x)=mx,若对于任意x,g(x)和h(x)的值至少有一个正解,即g(x)-h(x)>0,亦即2mf'(x)+(5m-8)x+6m+1>0,又f'(x)=x^2-2x-3,则上式为2mx^2+(m-8)x+1>0
则当m=0,时,-8x>-1,x0,上式恒定,则其戴尔它
f'(x)=3ax^2+2bx+c
f'(-x)=3ax^2-2bx+c
9ax^2+6bx+3c+6ax^2-4bx+2c=15ax^2+2bx+5c=5x²-2x-15恒成立
即15a=5,2b=-2,5c=-15,则,a=1/3,b=-1,c=-3
所以f(x)=1/3x^3-x^2-3x+2.
2.g(x)=2mf'(x)+(6m-8)x+6m+1,h(x)=mx,若对于任意x,g(x)和h(x)的值至少有一个正解,即g(x)-h(x)>0,亦即2mf'(x)+(5m-8)x+6m+1>0,又f'(x)=x^2-2x-3,则上式为2mx^2+(m-8)x+1>0
则当m=0,时,-8x>-1,x0,上式恒定,则其戴尔它
设函数f(x)=ax³+bx²+cx+d(a,b,c,d∈R),对任意的实数x,有3f'(x)+2f
设函数f(x)=ax^3+bx^2+cx+d(a b c d r),对任意的实数x,有3f'(x)+2f'(-x)=5x
设函数f(x)=ax^3+bx^2+cx+d,(a,b,c,d∈R)的图像关于原点对称,且当x=1时f(x)有极小值-2
设二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足f(-1)=0,且对任意实数x,均有x-1≤f(x)≤x^2
已知a,b,c,d是不全为零的实数,函数f(x)=bx^2+cx+d,g(x)=ax^3+bx^2+cx+d,方程f(x
已知实数a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0,设f(x)的导函数为f’(x),满足f
设函数f(x)=ax^3+bx^2+cx+b(a,b,c,d∈R)的图像关于原点对称且x=1时f(x)去最小值-2
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足:对于任意实数x,都有f(x)>=x, f(x)
设二次函数f(x)=ax^2+bx+c(a、b、c为常数)的导函数为f'(x),对任意X∈R,不等式f(x)≥f'(x)
设方程f(x)=ax^3+bx^2+cx+d=0(a不等于0)有三个实数根A B R(A小于 B小于 R) ,且f(x)
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足对任意实数X,都有f(x)≥x,且当x属于(1,3)
已知二次函数f(x)=ax^2+bx+c(a,b,c属于R)满足:对任意实数x,都有f(x)≥x,且当x∈(1,3)时,