P为△ABC内部任意一点,设AP,BP,CP分别交BC,CA,AB于点D,E,F,求证:S△DEF=(2PD*PE*PF
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 20:06:26
P为△ABC内部任意一点,设AP,BP,CP分别交BC,CA,AB于点D,E,F,求证:S△DEF=(2PD*PE*PF/PA*PB*PC)*S△ABC
这是一道计算证明题.
容易看出问题的关键是AD,BE,CF共点于P,则可以考虑使用梅涅劳斯定理和塞瓦定理.
记 AF/FB=x,BD/DC=y,CE/AE=z,则由塞瓦定理知:xyz=1
考虑FPC在△ABD三边上,由梅涅劳斯定理:(AF/BF)(BC/CD)(PD/AP)=1,
进一步求出 PD/AP=1/(x(1+z))
同理:PE/BP=1/(z(1+y)),FP/PC=1/(y(1+x))
从而有:(PD*PE*PF)/(PA*PB*PC)=1/((1+x)(1+y)(1+z))
另一方面,S△DEF/S△ABC=1-S△AEF/S△ABC-S△BDF/S△ABC-S△CDE/S△ABC
=1-x/((1+x)(1+y))-z/((1+x)(1+z))-y/((1+z)(1+y))
=2/((1+x)(1+y)(1+z))
从而命题得证.
容易看出问题的关键是AD,BE,CF共点于P,则可以考虑使用梅涅劳斯定理和塞瓦定理.
记 AF/FB=x,BD/DC=y,CE/AE=z,则由塞瓦定理知:xyz=1
考虑FPC在△ABD三边上,由梅涅劳斯定理:(AF/BF)(BC/CD)(PD/AP)=1,
进一步求出 PD/AP=1/(x(1+z))
同理:PE/BP=1/(z(1+y)),FP/PC=1/(y(1+x))
从而有:(PD*PE*PF)/(PA*PB*PC)=1/((1+x)(1+y)(1+z))
另一方面,S△DEF/S△ABC=1-S△AEF/S△ABC-S△BDF/S△ABC-S△CDE/S△ABC
=1-x/((1+x)(1+y))-z/((1+x)(1+z))-y/((1+z)(1+y))
=2/((1+x)(1+y)(1+z))
从而命题得证.
P为△ABC内部任意一点,设AP,BP,CP分别交BC,CA,AB于点D,E,F,求证:S△DEF=(2PD*PE*PF
设P为△ABC内任一点,直线AP、BP、CP交BC、CA、AB于点D、E、F.求证AD分之PD+BE分之PE+CF分之P
如图,P为三角形ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D,E,F求证(PD/AD)+(PE/AE)
如图,设P为△ABC内任意一点,直线AP、BP、CP交BC、CA、AB于点D、E、F.
如图,P为三角形ABC中任意一点,延长AP,BP,CP分别交BC,AC,AB于D,E,F.求证:AD+BC+CF>1/2
几何题:P为正△ABC内任意一点,P到AB,AC,BC距离分别为PE,PF,PD,连接AP,BP,CP
已知P是△ABC内任一点,连接AP交BC于D,连接BP交CA于e,连接cp交AB于F,求证
已知DEF分别是锐角△ABC的三边BC,CA,AB上的点,AD,BE,CF,交于P,AP=BP=CP=a,PD=x,PE
已知点P在等边三角形ABC内部,PD垂直AB于D,PE垂直BC于E,PF垂直CA于F,求证:PD+PE+PF为定值.
在△ABC,AB=AC,点P是边BC上的任意一点,PD⊥AB于D,PE⊥CA于E,CF⊥AB于F.求证PD+PE=CF
如图,点P是△ABC内任意一点,PD⊥AB,PE⊥BC,PF⊥AC,垂足分别为D.E.F,
已知:p为等边△ABC内任意一点,PD⊥AB于D,PE⊥AC于E,PB⊥BC于F.求证:PD+PE+PF是定值