作业帮 > 数学 > 作业

如图,P为三角形ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D,E,F求证(PD/AD)+(PE/AE)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 23:09:00
如图,P为三角形ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D,E,F求证(PD/AD)+(PE/AE)+(PF/CF)=1
用面积法,我只证得PD/AD=(S三角形BPC)/(S三角形ABC),然后过点B,C,P三点分别作高,但是无从入手
如图,P为三角形ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D,E,F求证(PD/AD)+(PE/AE)
题目有错误,应改为
如图,P为三角形ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D,E,F求证(PD/AD)+(PE/CE)+(PF/BF)=1
用面积法,我只证得PD/AD=S△BPC)/(S△ABC),然后过点B,C,P三点分别作高,
证明:PD/AD=S△BPC/S△ABC
同理 PE/CE=S△PAB/S△ABC
PF/BF=S△PAC/S△ABC
三式相加的
PD/AD)+(PE/CE)+(PF/BF)
=S△BPC/S△ABC+S△PAB/S△ABC+S△PAC/S△ABC
=(S△BPC+S△PAB+S△PAC)/S△ABC
=S△ABC/S△ABC
=1
所以PD/AD)+(PE/CE)+(PF/BF=1