如图,在直角梯形ABCD中AD∥BC∠ABC=90°,点E是DC的中点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 01:43:32
如图,在直角梯形ABCD中AD∥BC∠ABC=90°,点E是DC的中点
题目是不是这个:
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.
(1)若∠MFC=120°,求证:AM=2MB;
(2)求证:∠MPB=90°-
12∠FCM.证明:连结MD.
(1)∵ME⊥CD,E为CD中点
∴ME垂直平分CD
∴MC=MD
又∵CF=DA,MF=MA
∴△CMF≌△DMA
∴∠MAD=∠MFC=120°
又∵∠BAD=90°
∴∠MAB=30°
∴AM=2MB
(2)∵△CMF≌△DMA
∴∠FCM=∠ADM
又∵AD‖BC
∴∠CMD=∠ADM=∠FCM
∵MC=MD,ME为CD边中垂线
∴ME为角平分线
∴∠BMP=1/2∠CMD=1/2∠FCM
又∵AB⊥BC
∴∠MPB+∠BMP=90°
∴∠MPB=90°-1/2∠FCM
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.
(1)若∠MFC=120°,求证:AM=2MB;
(2)求证:∠MPB=90°-
12∠FCM.证明:连结MD.
(1)∵ME⊥CD,E为CD中点
∴ME垂直平分CD
∴MC=MD
又∵CF=DA,MF=MA
∴△CMF≌△DMA
∴∠MAD=∠MFC=120°
又∵∠BAD=90°
∴∠MAB=30°
∴AM=2MB
(2)∵△CMF≌△DMA
∴∠FCM=∠ADM
又∵AD‖BC
∴∠CMD=∠ADM=∠FCM
∵MC=MD,ME为CD边中垂线
∴ME为角平分线
∴∠BMP=1/2∠CMD=1/2∠FCM
又∵AB⊥BC
∴∠MPB+∠BMP=90°
∴∠MPB=90°-1/2∠FCM
如图,在直角梯形ABCD中AD∥BC∠ABC=90°,点E是DC的中点
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的中点,过点E作DC的
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB
已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB
如图在直角梯形abcd中,AD∥BC,∠abc=90°,e是dc的中点,em⊥dc交cb的延长线于点m,交ab于点p,点
已知:如图,在直角梯形ABCD中,AD‖BC,∠ABC=90°.点E是DC的中点,过点E作DC的垂线交AB于点P,交CB
已知,如图在直角梯形ABCD中,AD平行BC∠ABC=90,点E是DC中点,过点E做DC垂线交AB于P,交CB延长线于M
如图,在直角梯形ABCD中,∠ABC=90,AD∥BC,AB=BC,点E是AB的中点,CE⊥BD.求证:BE=AD&nb
如图,等腰梯形ABCD中,AB∥DC,AC⊥BC,点E是AB的中点,EC∥AD,则∠ABC等于( )
如图,在直角梯形ABCD中AD‖BC∠ABC=90°,E是AB的中点.求证:DE=CE
如图,梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,F是DC的中点,连接AE、AC、BD,
关于梯形如图,在梯形ABCD中,AD||BC,∠B=90°,DC=2BC,点E是DC的中点,求证:∠AEC=3∠EAD.