作业帮 > 数学 > 作业

设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2是分别属于λ1和λ2的特征向量

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 01:06:56
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2是分别属于λ1和λ2的特征向量
证明:ξ1+ξ2不是A的特征向量.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2是分别属于λ1和λ2的特征向量
证明: 反证.
假设 ξ1+ξ2 是A的属于特征值λ的特征向量
则 A(ξ1+ξ2) = λ(ξ1+ξ2)
而 A(ξ1+ξ2)=Aξ1+Aξ2=λ1ξ1+λ2ξ2
所以 (λ-λ1)ξ1+(λ-λ2)ξ2=0
由于A的属于不同特征值的特征向量线性无关'
所以 λ-λ1 = λ-λ2 = 0
所以 λ=λ1=λ2, 矛盾.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值,ξ1,ξ2是分别属于λ1和λ2的特征向量 A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量.若k1+k2仍为特征向 A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量. 线性代数问题 1元.设λ1、λ2是n阶矩阵A的两个不同特征值,对应的特征向量分别为α1、α2,试证:c1α1+c2α2( 设β1是n阶矩阵A属于特征值λ1的特征向量,β2,β3是A属于特征值λ2的特征向量,λ1≠λ2,证明:β1,β2,β3线 设入1入2 是矩阵A的两个不同的特征值,a1a2 分别属于特征值入1入2 的特征向量,证明:a1a2 线性无关 线性代数,设A是n阶方阵,λ1,λ2是A的两个不同特征值,X1,X2是A的分别属于λ1,λ2的特征向量,试证明X1,X2 设ξ是矩阵A的属于特征值λ的一个特征向量,求证:ξ是A^n的属于特征值λ^n的一个特征向量 λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求证α1,α2线性无关. 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是 设α,β分别为n阶矩阵A的不同特征值λ1,λ2的特征向量,对任意非零实数K1,K2,求证:K1α+k2β不是A的特征向量 设A是n阶矩阵,n维非零列向量α 是A的属于特征值λ 的特征向量,P是n阶可逆矩阵 ,则矩阵P^-1AP属于特征值λ 的