如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,DE⊥面CBB1.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 19:00:06
如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,DE⊥面CBB1.
(1)证明:DE∥面ABC;
(2)求四棱锥C-ABB1A1与圆柱OO1的体积比;
(3)若BB1=BC,求CA1与面BB1C所成角的正弦值.
(1)证明:DE∥面ABC;
(2)求四棱锥C-ABB1A1与圆柱OO1的体积比;
(3)若BB1=BC,求CA1与面BB1C所成角的正弦值.
(1)证明:连接EO,OA.∵E,O分别为B1C,BC的中点,∴EO∥BB1.
又DA∥BB1,且DA=EO=
1
2BB1.∴四边形AOED是平行四边形,
即DE∥OA,DE⊄面ABC.∴DE∥面ABC.
(2)由题DE⊥面CBB1,且由(1)知DE∥OA.∴AO⊥面CBB1,∴AO⊥BC,
∴AC=AB.因BC是底面圆O的直径,得CA⊥AB,且AA1⊥CA,
∴CA⊥面AA1B1B,即CA为四棱锥的高.
设圆柱高为h,底半径为r,则V柱=πr2h,V锥=
1
3h(
2r)•(
2r)=
2
3hr2,
∴V锥:V柱 =
2
3π.
(3) 作过C的母线CC1,连接B1C1,则B1C1是上底面圆O1的直径,
连接A1O1,得A1O1∥AO,又AO⊥面CBB1C1,
∴A1O1⊥面CBB1C1,连接CO1,
则∠A1CO1为CA1与面BB1C所成的角,
设BB1=BC=2,则A1C=
22+(
2)2=
6,
A1O1=1.(12分)
在Rt△A1O1C中,sin∠A1CO1=
A1O1
A1C=
6
6.
又DA∥BB1,且DA=EO=
1
2BB1.∴四边形AOED是平行四边形,
即DE∥OA,DE⊄面ABC.∴DE∥面ABC.
(2)由题DE⊥面CBB1,且由(1)知DE∥OA.∴AO⊥面CBB1,∴AO⊥BC,
∴AC=AB.因BC是底面圆O的直径,得CA⊥AB,且AA1⊥CA,
∴CA⊥面AA1B1B,即CA为四棱锥的高.
设圆柱高为h,底半径为r,则V柱=πr2h,V锥=
1
3h(
2r)•(
2r)=
2
3hr2,
∴V锥:V柱 =
2
3π.
(3) 作过C的母线CC1,连接B1C1,则B1C1是上底面圆O1的直径,
连接A1O1,得A1O1∥AO,又AO⊥面CBB1C1,
∴A1O1⊥面CBB1C1,连接CO1,
则∠A1CO1为CA1与面BB1C所成的角,
设BB1=BC=2,则A1C=
22+(
2)2=
6,
A1O1=1.(12分)
在Rt△A1O1C中,sin∠A1CO1=
A1O1
A1C=
6
6.
如图,AA1、BB1为圆柱OO1的母线,BC是底面圆O的直径,D、E分别是AA1、CB1的中点,DE⊥面CBB1.
圆柱OO1的高等于4cm,侧面积为16Pi平方厘米,AA1,BB1是它的两条母线,它们之间的距离是2根号3cm,M是BB
俺看不懂如图,在三棱柱ABC-A1B1C1中,BB1⊥面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.若
如图,直三棱柱ABC–A1B1C1中,D,E分别是AB,BB1的中点(1)证明BC1//平面A1CD(2)设AA1=AC
如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°.E为BB1的中点,D点在AB上且DE=3
高中立体几何题求解如图,在正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点.设AA1=2,求三棱锥E-
如图,在直三棱柱ABC=A1B1C1中,∠ACB=90°,E,F,D分别是AA1,AC,BB1的中点,且CD⊥C1D.
如图,在直三棱柱ABC=A1B1C1中,∠ACB=90°,E,F,D分别是AA1,AC,BB1的中点,且CD⊥C1D.(
如图, 在正方体ABCD—A1B1C1D1中,E、F分别是CC1、AA1的中点.AA1=2.
如图,在正方体ABCD-A1B1C1D1中,E,F分别是棱AA1,BB1的中点,求异面直线A1F与D1E所成角的余弦值.
(平面与平面性质)如图,四棱柱ABCD-A1B1C1D1中底面ABCD为正方形侧棱AA1⊥底面ABCD,E是棱BC的中点
如图:直三菱柱ABC—A1B1C1中,AC=BC=AA1=2,角ACB=90度,E为BB1的中点,D点在AB上且DE=√