作业帮 > 数学 > 作业

5.集合A={x | x=2n+1,n∈Z},B={y| y=4k±1,k∈Z},则A与B的关系为

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 23:50:37
5.集合A={x | x=2n+1,n∈Z},B={y| y=4k±1,k∈Z},则A与B的关系为
A.A不含于B B.A不包含B C.A=B D.A≠B
x=2n+1,n属于Z
当n是奇数时,可表示成:n=2k-1 ,k属于Z 从而,x=2(2k-1)+1=4k-1
当n是偶数时,可表示成:n=2k ,k属于Z 从而,x=2(2k)+1=4k+1
所以,集合A中的元素和集合B中的元素是一样的
所以 A=B
重点我想问的是:为什么当n是奇数时,可表示成:n=2k-1;
当n是偶数时,可表示成:n=2k
5.集合A={x | x=2n+1,n∈Z},B={y| y=4k±1,k∈Z},则A与B的关系为
2乘以任何数都是偶数,即2k为偶数,那么偶数减去1肯定就是奇数,所当n是奇数时,可表示成:n=2k-1;
当n是偶数时,可表示成:n=2k