函数的奇偶性习题f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在(0,正无穷)上有最大题是5,则H(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 23:14:40
函数的奇偶性习题
f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在(0,正无穷)上有最大题是5,则H(x)在(负无穷,0)有最小值____.麻烦详细一点,
f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在(0,正无穷)上有最大题是5,则H(x)在(负无穷,0)有最小值____.麻烦详细一点,
设H(x)=F(x)-2=af(x)+bg(x)
所以H(x)=af(x)+bg(x)
H(-x)=af(-x)+bg(-x)=-af(x)-bg(x)=-[af(x)+bg(x)]=-H(-x)
所以H(x)为奇函数
F(x)在(0,+无穷)取最大值5时,即H(x)在(0,+无穷)也取最大值3
F(x)在(-无穷,0)取最小值时,即H(x)在(-无穷,0)也取最小值
H(x)的最大值为3,又知其为奇函数,所以最小值为-3,
所以F(x)的最小值为-1
所以H(x)=af(x)+bg(x)
H(-x)=af(-x)+bg(-x)=-af(x)-bg(x)=-[af(x)+bg(x)]=-H(-x)
所以H(x)为奇函数
F(x)在(0,+无穷)取最大值5时,即H(x)在(0,+无穷)也取最大值3
F(x)在(-无穷,0)取最小值时,即H(x)在(-无穷,0)也取最小值
H(x)的最大值为3,又知其为奇函数,所以最小值为-3,
所以F(x)的最小值为-1
函数的奇偶性习题f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在(0,正无穷)上有最大题是5,则H(
f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在 (0 正无穷)有最大值5,H(x)在(负无穷~0)
函数f(x)和g(x)都是R上的奇函数,H(x)=af(x)+bg(x)+2在区间(0,正无穷)上有最大值5,则H(x)
函数F(X)和G(X)均为奇函数,H(X)=af(x)+bg(x)+2,在区间(0,正无穷大)上有最大值5 那么h(x)
函数奇偶性判断最值函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,
已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在
高一数学(1)已知f(x),g(x)均为奇函数,且F(x)=af(x)+bg(x)+2在(0,正无穷)上有最大值5,则F
函数f(x)和g(x)都是r上的奇函数,h(x)=af(x)+bg(x)+2在区间(0,正无穷大)上有最大值
若f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2,在区间(0,+oo)上有最大值5,则h(X)在区间
若函数f(x)、g(x)都是奇函数,F(x)=af(x)+bg(x)+2在区间(0,正无穷)上有最大值5,则f(x)在区
函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2,在正数上有最大值5,那么,在负数上最小值为多少看
设f(x),g(x)都是定义域在R上的奇函数,F(x)=af(x)+bg(x)+2在区间(0,正无穷)上,最大值是5,求