函数f(x)和g(x)都是R上的奇函数,H(x)=af(x)+bg(x)+2在区间(0,正无穷)上有最大值5,则H(x)
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/11 14:33:46
函数f(x)和g(x)都是R上的奇函数,H(x)=af(x)+bg(x)+2在区间(0,正无穷)上有最大值5,则H(x)
在区间(负无穷,0)上的最小值为多少
在区间(负无穷,0)上的最小值为多少
设H(X1)中X1在(0,+∞),且H(X1)=5
所以H(-X1)中-X1在(-∞,0)
因为f(X)和g(X)都是奇函数,所以f(-X)=-f(X),g(-X)=-g(X)
H(-X1)
=af(-X1)+bg(-X1)+2
=-af(X1)-bg(X1)+2
=-[af(X1)+bg(X1)+2]+4
=-H(X1)+4
因为H(-X1)-5+4=-1
最小值为-1
所以H(-X1)中-X1在(-∞,0)
因为f(X)和g(X)都是奇函数,所以f(-X)=-f(X),g(-X)=-g(X)
H(-X1)
=af(-X1)+bg(-X1)+2
=-af(X1)-bg(X1)+2
=-[af(X1)+bg(X1)+2]+4
=-H(X1)+4
因为H(-X1)-5+4=-1
最小值为-1
函数f(x)和g(x)都是R上的奇函数,H(x)=af(x)+bg(x)+2在区间(0,正无穷)上有最大值5,则H(x)
函数f(x)和g(x)都是r上的奇函数,h(x)=af(x)+bg(x)+2在区间(0,正无穷大)上有最大值
设f(x),g(x)都是定义域在R上的奇函数,F(x)=af(x)+bg(x)+2在区间(0,正无穷)上,最大值是5,求
已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在
函数的奇偶性习题f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在(0,正无穷)上有最大题是5,则H(
若函数f(x)、g(x)都是奇函数,F(x)=af(x)+bg(x)+2在区间(0,正无穷)上有最大值5,则f(x)在区
函数F(X)和G(X)均为奇函数,H(X)=af(x)+bg(x)+2,在区间(0,正无穷大)上有最大值5 那么h(x)
若函数f(x)和g(x)都是奇函数且F(x)=af(x)+bg(x)+2在(0,+∞)上有最大值5,则F(x)在(-∞,
f(x),g(x)均为奇函数,H(x)=af(x)+bg(x)+2在 (0 正无穷)有最大值5,H(x)在(负无穷~0)
高一数学(1)已知f(x),g(x)均为奇函数,且F(x)=af(x)+bg(x)+2在(0,正无穷)上有最大值5,则F
已知f(x)g(x)是r上奇函数,若f(x)=af(x)+bg(x)+2在区间(0.+∞)上的最大值为5则f(x)在(-
若函数f(x),g(x)都是定义在R上奇函数,F(x)=af(x)+bg(x)+2在区间(0,+∞),最大值5,