已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 07:14:12
已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE
DE=√15
(1)求证:AM×MB=EM×MC
(2)求EB的长
(3)求sin∠EOB的值
DE=√15
(1)求证:AM×MB=EM×MC
(2)求EB的长
(3)求sin∠EOB的值
(1)连接AC和BE,证明△AMC和△EMB相似.由对顶角可知∠AMC=∠EMB ①,又 圆周角∠MAC 和 圆周角∠MEB 均对着圆弧BC,所以∠MAC=∠EMB ②,由①和②就能得出△AMC∽△EMB.则有比例式 AM / EM = MC / BM,所以AM×MB=EM×MC.
(2)CD是圆O的直径,所以∠CED=90°,在Rt△CED中由勾股定理求得CE=7,即EM+MC=7③,又由(1)知EM×MC=AM×MB=(4+2)×2=12④,联立③④得EM=4,MC=3 (EM>MC).在△OME中由余弦定理可知cos∠EOM=(OM^2+OE^2-EM^2)/(2×OM×OE)=1/4,在△EOB中同样由余弦定理得EB^2=OE^2+OB^2-2×OE×OB×cos∠EOM=24,所以EB=2√6
(3)(cos∠EOB)^2 + (sin∠EOB)^2 = 1,(cos∠EOB)^2=1/16,所以sin∠EOB=√(15/16)=(√15)/4(三角形中∠EOB0)
P.S.:余弦定理应该已经学了吧~如果还没学的话求cos∠EOM时可以在△EOM中作边OM的垂线求,△EOM是等腰三角形很好求的.
(2)CD是圆O的直径,所以∠CED=90°,在Rt△CED中由勾股定理求得CE=7,即EM+MC=7③,又由(1)知EM×MC=AM×MB=(4+2)×2=12④,联立③④得EM=4,MC=3 (EM>MC).在△OME中由余弦定理可知cos∠EOM=(OM^2+OE^2-EM^2)/(2×OM×OE)=1/4,在△EOB中同样由余弦定理得EB^2=OE^2+OB^2-2×OE×OB×cos∠EOM=24,所以EB=2√6
(3)(cos∠EOB)^2 + (sin∠EOB)^2 = 1,(cos∠EOB)^2=1/16,所以sin∠EOB=√(15/16)=(√15)/4(三角形中∠EOB0)
P.S.:余弦定理应该已经学了吧~如果还没学的话求cos∠EOM时可以在△EOM中作边OM的垂线求,△EOM是等腰三角形很好求的.
已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,
已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC,连接DE
已知:如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC,连结DE,
已知:如图,在圆O中,AB、CD是两条直径,M为OB的中点,CM的延长线交圆O于点E,且EM>MC,连接DE,AB=8,
如图,在半径为4的圆O中,AB.CD是两条直径,M为OB的中点,CM的延长线交圆O于点E,且EM大于MC,连结DE,DE
如图在半径为4的圆O中,AB.CD是两条直径,M为OB的中点,CM的延长线交圆O于点E
图的地址:题的大概:圆O半径是4,AB,CD是直径,M是OB中点,CM的延长线交于点E,且EM>MC,连CE,DE=根号
如图,在圆O中,AB,CD是两条直径,M为OB上一点,CM的延长线交圆O于点E,连结DE.若M为OB的中点,AB=16,
圆的有关证明题 如图,在半径为4的圆O中,AB、CD是两条直径,M是OB的中点,CM的延长线交圆O于点E,
如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P,E为⊙O上一点,AE=AC,DE交AB于点F,且AB=2BP=4
已知:如图,在△ABC中,AB=AC.以AB为直径的⊙o交BC于点D,过点D做DE⊥AC于点E.延长DE交BA的延长线于
如图,圆的直径AB与弦CD相交于E,CE=DE,过点C=B作CD的平分线交AD延长线与F 连接BC,若圆O的半径为4,s