对于在区间【a,b】上有意义的两个函数f(x)和g(x)在区间【a,b】
对于在区间【a,b】上有意义的两个函数f(x)和g(x)在区间【a,b】
对于在区间[a,b]上有意义的两个函数f(x)和g(x),如果对任意x∈[a,b],均有|f(x)-g(x)|≤1,那么
对于在区间[a,b]上有意义的两个函数f(x)和g(x),如果对任意x∈[a,b],均有│f(x)-g(x)│≤1,那么
函数f(x),g(x)在区间[a,b]上都有意义,且在此区间上
设函数f(x)和g(x)在区间[a,b]上的导数满足f'(x)>g'(x),则在(a,b)上一定有
对于在【a,b】上有意义的两个函数f(x)和g(x),若对任意x∈【a,b】,都有|f(x)-g(x)|≤1成立,则称f
设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若函数y=f(x)-g(x)在x∈[a,b]上有两个不同的零
在区间(a,b)上,函数f(x),g(x)都是增函数,则F(x)=f(x)g(x)在(a,b)上是
对于在区间 对于在区间D上有定义的函数f(x)和g(x)
设偶函数f(x)在区间[a,b]上是增函数(a>0),判断F(x)=(1/2)^f(x)-x 在区间[-b,-a]上的单
1.函数f(x)在R上有意义,在区间[a,b]上的最小值为m,那么f(x+4)+3在区间[a-4,b-4]上有最小值为_
设f(x)与g(x)是定义在同一区间【a,b】上的两个函数,若对任意x∈【a,b】,都有|f(x)-g(x)|≤1成立,