一道椭圆数学题目设斜率为K的直线L交椭圆于A,B两点,AB的中点为M,证明:当直线L平行移动时,动点M的轨迹是一条过原点
一道椭圆数学题目设斜率为K的直线L交椭圆于A,B两点,AB的中点为M,证明:当直线L平行移动时,动点M的轨迹是一条过原点
设F1,F2是椭圆的两个焦点,过F2作斜率为1的直线L,交椭圆于A,B两点.M为线段的中点,射线OM交椭圆于点C.若向量
一道圆锥曲线的题椭圆在X轴上,过椭圆的右焦点F作斜率为1的直线l,交椭圆于A,B两点,M为线段AB的中点,射线OM交椭圆
过点M(-2,0)的直线l与椭圆交于p1p2两点,线段p1p2中点为p,设直线l斜率为k(k≠0)直线op斜率为k2
过点M(-1,1/2)的直线l与椭圆x²+2y²=2交于A,B两点,设线段AB中点为M,设直线l的斜
已知椭圆W:x2/4+y2=1,直线l过点(0,-2)与椭圆W交于两点A,B,O为坐标原点。 (1)设C为AB的中点,当
斜率为K的直线交椭圆于AB两点,AB中点为M直线平移时求M的轨迹方程
过椭圆x^2/a^2+y^2/b^2=1的右焦点F作斜率为1的直线l,交椭圆于A、B两点,M为线段AB的中点,射线OM交
设椭圆方程为X^2+Y^2/4=1.过点M(0.1)的直线L交椭圆于点A,B两点,O为坐标原点,
设椭圆方程为X^2+Y^2/4=1.过点M(0.1)的直线L交椭圆于点A,B两点,O为坐标原点,P满足OP向量=1/2(
x^2/2+y^2=1的左焦点F,O为原点,若过点F作直线l交椭圆于AB两点,AB中点M在直线x+y=0,求直线l的方程
斜率为k1的直线与椭圆x^2/2+y^2=1交于A、B两点,点M为AB的中点,O为原点,记直线OM的斜率为k2,则k1k