lim n趋向正无穷 求(1+1/n^3)^n的极限
lim n趋向正无穷 求(1+1/n^3)^n的极限
求极限:Lim(1+1/n-1/n^2)^n n趋向于正无穷
求极限 lim 【(1+2+3+...+n)/(n+2)-n/2】趋向是无穷
证明下列极限:lim(n/a^n)=0(a>1)(n趋向正无穷)
求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n
求极限lim(n趋向于无穷)(n+1)(根号下(n^2+1)-n)
求下列数列的极限,lim3n²+n/2n²-1n趋向于正无穷lim(1+1/2+---+1/2的n次
求极限lim(n趋向于正无穷)n*【(1/(1+n方)+1/(2的平方+n方)+1/(3的平方+n方)+...+(1/n
n趋向正无穷 求极限n*[e^2-(1+1/n)^2n]
(2+(2/3)^1/n)^n,求当n趋向于正无穷的极限
求lim[ntan(1/n)]^n^2的极限 ,n趋向无穷,最好用洛必达法则来求
用数列极限的定义证明:lim(3n+1)/(2n+1)=3/2 ,当n 趋向于正无穷时.