(2007•绵阳)如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/10 22:13:31
(2007•绵阳)如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心M(1,m)恰好在此抛物线的对称轴上,⊙M的半径为
5 |
(1)由题意可知C(0,-3),-
b
2a=1,
∴抛物线的解析式为y=ax2-2ax-3(a>0),
过M作MN⊥y轴于N,连接CM,则MN=1,CM=
5,
∴CN=2,于是m=-1.
同理可求得B(3,0),
∴a×32-2a×3-3=0,得a=1.
∴抛物线的解析式为y=x2-2x-3.
(2)由(1)得A(-1,0),E(1,-4),B(3,0),C(0,-3).
∵M到AB,CD的距离相等,OB=OC,
∴OA=OD,
∴点D的坐标为(0,1),
∴在Rt△BCO中,BC=
OB2+OC2=3
2,
∴
OB
OD=
3
1=3,
在△BCE中,∵BC2+CE2=(32+32)+[(1-0)2+(-4+3)2]=20=(3-1)2+(0+4)2=BE2
∴△BCE是Rt△
BC
CE=
3
2
2=3,
∴
OB
OD=
BC
CE,
即
OB
BC=
OD
CE,
∴Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=β,
因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=
CO
BC=
b
2a=1,
∴抛物线的解析式为y=ax2-2ax-3(a>0),
过M作MN⊥y轴于N,连接CM,则MN=1,CM=
5,
∴CN=2,于是m=-1.
同理可求得B(3,0),
∴a×32-2a×3-3=0,得a=1.
∴抛物线的解析式为y=x2-2x-3.
(2)由(1)得A(-1,0),E(1,-4),B(3,0),C(0,-3).
∵M到AB,CD的距离相等,OB=OC,
∴OA=OD,
∴点D的坐标为(0,1),
∴在Rt△BCO中,BC=
OB2+OC2=3
2,
∴
OB
OD=
3
1=3,
在△BCE中,∵BC2+CE2=(32+32)+[(1-0)2+(-4+3)2]=20=(3-1)2+(0+4)2=BE2
∴△BCE是Rt△
BC
CE=
3
2
2=3,
∴
OB
OD=
BC
CE,
即
OB
BC=
OD
CE,
∴Rt△BOD∽Rt△BCE,得∠CBE=∠OBD=β,
因此sin(α-β)=sin(∠DBC-∠OBD)=sin∠OBC=
CO
BC=
(2007•绵阳)如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点的圆的圆心
如图,已知抛物线y = ax2 + bx+c过点C(0,-3),与x轴交于A、B两点,经过A、B、C三点的圆的圆心M(1
问一道数学问题(急)如图,已知抛物线y = ax2 + bx-3与x轴交于A、B两点,与y轴交于C点,经过A、B、C三点
(2013•新疆)如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐
如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,
如图,已知抛物线y=ax2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点.
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线X=1,
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6
(2014•漳州模拟)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD
如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)