作业帮 > 数学 > 作业

已知向量a=[cosa,sina],b=[cosβ,sinβ],且a,b满足关系

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 07:30:58
已知向量a=[cosa,sina],b=[cosβ,sinβ],且a,b满足关系
已知向量a=[cosa,sina],b=[cosβ,sinβ],且a,b满足关系
[解题过程]已知a=(cosa,sina),b=(cosb,sinb),且a与b之间满足关系式:
/ka+b/=开根号下3*/a-kb/,其中k大于0
(1)用k表示a*b(数量积)
(2)求a*b的最小值,并求此时a与b的夹角的大小 (a b 是向量,k是实数)
(1)/a/=1,/b/=1 /ka+b/=开根号下3*/a-kb/,
两边同时平方得 k^2*/a/^2+2k(a.b)+/b/^2=3*[/a/^2-2k(a.b)+k^2*/b/^2]
8k(a.b)=2k^2+2 (a.b)=(k^2+1)/4k
(2)cos(a.b)=(a.b)除以/a/*/b/ =(k^2+1)/4k =(k+1/k)/4≥[2根号k*(1/k)]/4=1/2
等号成立k=1 交角为60度