作业帮 > 数学 > 作业

已知:直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,侧棱AA1=2,N是棱AA1的中点,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:48:42
已知:直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,侧棱AA1=2,N是棱AA1的中点,
1.求向量BN的长
2.求cos<BA1,CB1>的值
已知:直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,侧棱AA1=2,N是棱AA1的中点,
^2是平方
1) 由于NA⊥平面ABC,所以NA⊥AB,则BN=√(AN^2+AB^2)
    在Rt△ABC中,∠BAC=90°,所以AB=√(AC^2+BC^2)=√(1^2+1^2)=√2
    而N是AA1中点,AN=AA1/2=2/2=1
    所以BN=√(AN^2+AB^2)=√(1^2+(√2)^2)=√3
2) 先把两条线段平移,使其共用一个端点:
    分别取A1B1、BB1、BC的中点F、G、D,联结FG、DG
    则FG∥A1B,DG∥B1C
    所以cos<A1B,B1C>=cos<FG,DG>=cos∠DGF,cos∠DGF即为所求
 
    随后在△DFG中用余弦定理可以求cos∠DGF:
    联结DF,取AB中点E,联结DE、EF,则DE=AC/2=1/2
    由于A1F=A1B1/2=AB/2=AE,且A1F∥AE,所以四边形AEFA1是平行四边形
    则EF=AA1=2,且EF∥AA1,又AA1⊥平面ABC
    所以EF⊥平面ABC,则EF⊥DE,所以DF=√(DE^2+EF^2)=√((1/2)^2+2^2)=√17/2
    F、G分别是A1B1、BB1中点,所以FG=A1B/2
    而由AA1⊥平面ABC得AA1⊥AB
    所以A1B=√(AB^2+AA1^2)=√((√2)^2+2^2)=√6,所以FG=A1B/2=√6/2
    D、G分别是BC、BB1中点,所以DG=B1C/2
    而由BB1⊥平面ABC得BB1⊥BC
    所以B1C=√(BC^2+BB1^2)=√(1^2+2^2)=√5,所以DG=B1C/2=√5/2
    在△DGF中,DF=√17/2,DG=√5/2,FG=√6/2
    由余弦定理,cos∠DGF=(DG^2+FG^2-DF^2)/(2DG*FG)
    所以cos∠DGF=((√5/2)^2+(√6/2)^2-(√17/2)^2)/(2*√5/2*√6/2)=-√30/10
    即cos<A1B,B1C>=-√30/10