二次函数难题(初中)已知抛物线Y=√3X^2/2-√3X+M的图象经过点M(1,-2√3),交X轴于B、C两点(点B在点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 23:03:01
二次函数难题(初中)
已知抛物线Y=√3X^2/2-√3X+M的图象经过点M(1,-2√3),交X轴于B、C两点(点B在点C的左侧)
(1)求顶点A的坐标
(2)在抛物线的对称轴上求一点P,使得∠BPC=120°.
(3)在(2)的条件下,四边形ABPC为凸四边形时,D、E分别为线段AB、AC上的动点∠DPE=60°,AD+AE=X,DE=Y,求Y关于X的函数关系式(不必写出自变量的范围)
前面两题简单的.主要是第三个,如果有好答案,
已知抛物线Y=√3X^2/2-√3X+M的图象经过点M(1,-2√3),交X轴于B、C两点(点B在点C的左侧)
(1)求顶点A的坐标
(2)在抛物线的对称轴上求一点P,使得∠BPC=120°.
(3)在(2)的条件下,四边形ABPC为凸四边形时,D、E分别为线段AB、AC上的动点∠DPE=60°,AD+AE=X,DE=Y,求Y关于X的函数关系式(不必写出自变量的范围)
前面两题简单的.主要是第三个,如果有好答案,
(1)∵函数过M(1,-2√3),
∴√3/2-√3+m=-2√3
m=-(3√3)/2
y=√3X^2/2-√3X-(3√3)/2
==√3/2(x-1)^2-2√3,∴A为(1,-2√3)
(2)y=√3/2(x-3)(x+1)
∴B(-1,0),C(3,0),抛物线的对称轴为直线x=1,
∴设P为(1,a),过P作x轴垂线PE,∴∠BPE=60°
∴√3|a|=BE=4,a=±4√3/3,
P(1,4√3/3),或(1,-4√3/3)
(3)延长AB,截取BE=CE,连接PF,
可证△PED≌△PED
DE=DF=BD+CE=y
AB+AC=AD+BD+AE+CE=x+y=8,
y=8-x
∴√3/2-√3+m=-2√3
m=-(3√3)/2
y=√3X^2/2-√3X-(3√3)/2
==√3/2(x-1)^2-2√3,∴A为(1,-2√3)
(2)y=√3/2(x-3)(x+1)
∴B(-1,0),C(3,0),抛物线的对称轴为直线x=1,
∴设P为(1,a),过P作x轴垂线PE,∴∠BPE=60°
∴√3|a|=BE=4,a=±4√3/3,
P(1,4√3/3),或(1,-4√3/3)
(3)延长AB,截取BE=CE,连接PF,
可证△PED≌△PED
DE=DF=BD+CE=y
AB+AC=AD+BD+AE+CE=x+y=8,
y=8-x
二次函数难题(初中)已知抛物线Y=√3X^2/2-√3X+M的图象经过点M(1,-2√3),交X轴于B、C两点(点B在点
已知二次函数y=-x^2+3x+k的图像经过点C(0,-2),与x轴交于A,B两点(点A在点B的左边),直线x=m(m&
已知抛物线y=x^2+(m-1)x-m经过(-2,-3),并且与x轴交于A、B两点(点A在点B的左侧),交y轴与点C.
已知二次函数y=1/2x²-x+m的图像经过点A(-3,6),并与x轴交于B,C两点(点B在C左边)P为它的顶
已知二次函数y=1/2x²-x+m的图像经过点A(-3,6),并与x轴交于B,C两点(点B在C左边)P为它的顶
已知二次函数y=1/2x²-x+m的图像经过点A(-3,6),并与x轴交于B,C两点(点B在C左边)P为它的顶
如图,已知二次函数y=(x-1)2的图象的顶点为C点,图象与直线y=x+m的图象交于A、B两点,其中A点的坐标为(3,4
求一题数学已知二次函数y=x^2-4x+3的图象与X轴交于A,B两点,(点A在点B的左边),与x轴交与点C,顶点为D(1
已知二次函数y=ax^2+bx+c(a>0)的图象与x轴交于A、B两点,且点A在点B的左边,与y轴交于点C,且过点M(-
如图,已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
已知关于x的二次函数y=mx^2-根号3(m+1)x+3的图像交x轴于AB两点(A在B的左侧),交Y轴于点C,m不等于零
已知直线y=3x+m与x轴交于点A,与y轴交于点C,二次函数y=ax²+bx-3的图像抛物线经过A、B(-2,