设函数f(x)=2sin(ωx+π6)(ω>0)对任意x∈R有f(x1)≤f(x)≤f(x2)且点A(x1,f(x1))
设函数f(x)=2sin(ωx+π6)(ω>0)对任意x∈R有f(x1)≤f(x)≤f(x2)且点A(x1,f(x1))
若定义在R上的函数f(x)对任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-1成立,且当x>0时,f
设函数f(x)是定义域在R上的函数,若对任意X1,X2都有f(X1+X2)+f(x1-x2)=2f(x1)f(x2)求f
设函数f(x)的定义域为R,对任意实数x1,x2,总有f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)>0
定义在R上的函数f(x) (f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>
已知函数f(x)定义域为{x|x≠0,x∈R}},对定义域的任意x1,x2都有f(x1乘x2)=f(x1)+f(x2)且
已知函数f(x)的定义域为R,对任意实数x1,x2,都有f(x1+x2)=f(x1)+f(x2)成立,且当x>0时,有f
设函数y=f(x)(x∈R且x≠0)对定义域内任意的x1x2恒有f(x1 * x2)=f(x1)+f(x2)
高中 指数函数已知函数y=f(X)满足对任意x1、x2有f(x1+x2)=f(x1)*f(x2),且x>0时,f(x)<
已知二次函数f(x)=ax²+bx+c,对任意x1,x2∈R,x1<x2,且f(x1)≠f(x2),求证:关于
设函数f(x)的定义域为R,且满足下列两个条件:(1)存在x1≠x2,使f(x1)≠f(x2);(2)对任意x∈R,有f
(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且