设函数f(x)的定义域为R,对任意实数x1,x2,总有f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)>0
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 17:26:16
设函数f(x)的定义域为R,对任意实数x1,x2,总有f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)>0且f(2)=3
1、判断f(x)的奇偶性和单调性;
2、求f(x)在区间【-2,4】上的最大值和最小值;
3、当θ∈【0,π/2】时,f(cosθ-3)+f(4m-2mcosθ)>0对所有θ均成立.求实数m的取值范围.
1、判断f(x)的奇偶性和单调性;
2、求f(x)在区间【-2,4】上的最大值和最小值;
3、当θ∈【0,π/2】时,f(cosθ-3)+f(4m-2mcosθ)>0对所有θ均成立.求实数m的取值范围.
1.(1)因为f(x1+x2)=f(x1)+f(x2),所以有f(0+0)=f(0)=f(0)+f(0)=2f(0),故f(0)=0
又f(0)=f[x+(-x)]=f(x)+f(-x)=0,故f(-x)=-f(x)
函数f(x)的定义域为R,关于x轴对称,所以f(x)是奇函数.
(2) 设x1.x2∈R,且x1>x2.则f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2).
因为x1-x2>0,所以f(x1-x2))>0,f(x1)>f(x2)).所以是单调递增函数
2.f(x)单调递增,[f(x)]MIN=f(-2)=-f(2)=-3;[f(x)]MAX=f(4)=2f(2)=6
3.f(cosθ-3)>-f(4m-2mcosθ)=f(2mcosθ-4m)
f(x)单调递增,故cosθ-3>2m(cosθ-2)
2m
又f(0)=f[x+(-x)]=f(x)+f(-x)=0,故f(-x)=-f(x)
函数f(x)的定义域为R,关于x轴对称,所以f(x)是奇函数.
(2) 设x1.x2∈R,且x1>x2.则f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2).
因为x1-x2>0,所以f(x1-x2))>0,f(x1)>f(x2)).所以是单调递增函数
2.f(x)单调递增,[f(x)]MIN=f(-2)=-f(2)=-3;[f(x)]MAX=f(4)=2f(2)=6
3.f(cosθ-3)>-f(4m-2mcosθ)=f(2mcosθ-4m)
f(x)单调递增,故cosθ-3>2m(cosθ-2)
2m
设函数f(x)的定义域为R,对任意实数x1,x2,总有f(x1+x2)=f(x1)+f(x2),当x>0时,f(x)>0
设函数F(X)的定义域为R,对任意实数X1,X2,有F(X1)+F(X2)=2F(X1+X2/2)乘以F(X1-X2)/
设函数f(x)的定义域为R,对任意实数x1,x2,有f(x1)+f(x2)=2f{(x1+x2)/2}×f{(x1-x2
设函数f(x)的定义域为R,对任意实数x1,x2,总有f(x1+x2)=f(x1)*f(x2)
高一数学,SOS设函数f(x)的定义域为R,对任意实数x1,x2,总有f(x1+x2)=f(x1)+f(x2),当x>0
已知函数f(x)的定义域为R,对任意实数x1,x2,都有f(x1+x2)=f(x1)+f(x2)成立,且当x>0时,有f
已知函数f(x)的定义域为R,对任意x1,x2都满足f(x1+x2)=f(x1)+f(x2),当x>0时f(x)>0.
已知函数f(x)的定义域为R且对任意实数x1,x2.,总有f(x1+x2)+f(x1-x2)=2f(x1)f(x2)成立
函数f(x)的定义域为u(a,b),且对其内任意实数x1,x2均有(x1-x2)[f(x1)-f(x2)]>0,则f(x
定义在R上的函数f(x) (f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>
设函数f(x)的定义域为R,对任意实数X1,X2,有
设函数f(x)是定义域在R上的函数,若对任意X1,X2都有f(X1+X2)+f(x1-x2)=2f(x1)f(x2)求f