已知A(-1,0),B(0,-3),点C与点A关于坐标原点对称,点D是Y轴上一动点,直线CD与直线AB交于点E.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 00:46:20
已知A(-1,0),B(0,-3),点C与点A关于坐标原点对称,点D是Y轴上一动点,直线CD与直线AB交于点E.
(1)求直AB的解析式;(2)若点D(0,1),过B作BF垂直于CD于F,求
(1)求直AB的解析式;(2)若点D(0,1),过B作BF垂直于CD于F,求
(1)依题意,设直线AB的解析式为
y=kx-3
∵A(-1,0)在直线上,
∴0=-k-3.
∴k=-3.
∴直线AB的解析式为y=-3x-3.
(2)如图1,依题意,C(1,0),OC=1.
由D(0,1),得OD=1.
在△DOC中,∠DOC=90°,OD=OC=1.
可得∠CDO=45°.
∵BF⊥CD于F,
∴∠BFD=90°.
∴∠DBF=90°-∠CDO=45°.
可求得直线CD的解析式为y=-x+1
由 {y=-3x-3
y=-x+1
解得 {x=-2
y=3
∴直线AB与CD的交点为E(-2,3).
过E作EH⊥y轴于H,则EH=2.
∵B(0,-3),D(0,1),
∴BD=4.
∴S△BCE=S△BDE+S△BDC= 12×4×2+ 12×4×1=6
3)连接BC,作BM⊥CD于M.
∵AO=OC,BO⊥AC,
∴BA=BC.
∴∠ABO=∠CBO.
设∠CBO=α,则∠ABO=α,∠ACB=90°-α.
∵BG=BA,
∴BG=BC.
∵BM⊥CD,
∴∠CBM=∠GBM.
设∠CBM=β,则∠GBM=β,∠BCG=90°-β.
(i) 当点G在射线CD的反向延长线上时,
∵∠ABG=2α+2β=2(α+β)
∠ECA=180°-(90°-α)-(90°-β)=α+β
∴∠ABG=2∠ECA.…(6分)
(ii) 当点G在射线CD的延长线上时,
∵∠ABG=2α-2β=2(α-β)
∠ECA=(90°-β)-(90°-α)=α-β
∴∠ABG=2∠ECA.
综上,∠ABG=2∠ECA.
y=kx-3
∵A(-1,0)在直线上,
∴0=-k-3.
∴k=-3.
∴直线AB的解析式为y=-3x-3.
(2)如图1,依题意,C(1,0),OC=1.
由D(0,1),得OD=1.
在△DOC中,∠DOC=90°,OD=OC=1.
可得∠CDO=45°.
∵BF⊥CD于F,
∴∠BFD=90°.
∴∠DBF=90°-∠CDO=45°.
可求得直线CD的解析式为y=-x+1
由 {y=-3x-3
y=-x+1
解得 {x=-2
y=3
∴直线AB与CD的交点为E(-2,3).
过E作EH⊥y轴于H,则EH=2.
∵B(0,-3),D(0,1),
∴BD=4.
∴S△BCE=S△BDE+S△BDC= 12×4×2+ 12×4×1=6
3)连接BC,作BM⊥CD于M.
∵AO=OC,BO⊥AC,
∴BA=BC.
∴∠ABO=∠CBO.
设∠CBO=α,则∠ABO=α,∠ACB=90°-α.
∵BG=BA,
∴BG=BC.
∵BM⊥CD,
∴∠CBM=∠GBM.
设∠CBM=β,则∠GBM=β,∠BCG=90°-β.
(i) 当点G在射线CD的反向延长线上时,
∵∠ABG=2α+2β=2(α+β)
∠ECA=180°-(90°-α)-(90°-β)=α+β
∴∠ABG=2∠ECA.…(6分)
(ii) 当点G在射线CD的延长线上时,
∵∠ABG=2α-2β=2(α-β)
∠ECA=(90°-β)-(90°-α)=α-β
∴∠ABG=2∠ECA.
综上,∠ABG=2∠ECA.
已知A(-1,0),B(0,-3),点C与点A关于坐标原点对称,点D是Y轴上一动点,直线CD与直线AB交于点E.
已知平面直角坐标系有两点A(-1,0)B(0,2)点C于点A关于坐标原点对称,经过点C的动线L与y轴交与D,于直线AB交
如图,在直角坐标系中,点B坐标为(-4,0),点C与点B关于原点O对称,点A是y轴上一动点其坐标为(0,k),BE,CD
已知:直线y=-2x+8与x轴交于点A与Y轴交于点B,点P是线段AB上一动点.(1)求AB坐标
已知:AB是⊙O的直径,弦CD⊥AB于点G,E是直线AB上一动点(不与点A、B、G重合),直线DE交⊙O于点F,直线CF
平面直角坐标系中,直线AB与x轴,y轴分别交于A(3.0),B(0,根号3)两点,点C为线段AB上的一动点,过点C作CD
已知点P(m-5,2m)在直线y=x+3上,点A与点P关于原点对称,点B与点A关于y轴对称,求点A,点B,的坐标.
若直线L;y=x+3交x轴与点A,交y轴与点B.坐标原点O关于直线L的对称点C在反比例函数Y=k/x的图像上.
已知直线y=-3/4x+6与x轴交于点A,与y轴交于点B.点C的坐标为(0 -2),线段AB上有一动点P,过点C,P作直
如图1,在平面直角坐标系中,点O是坐标原点,直线y=-4/3x+8与y轴交于点A,与x轴交于点C(6,0),直线y=
在平面直角坐标系中,直线ab交x轴于a点,交y轴于b点,点c是直线ab上一动点.
如图所示,已知直线AB过点C(1,2),且与x轴、y轴分别交于点A、B,CD⊥x轴于D,CE⊥y轴于E,CF交y轴于G,