f(x)在(-∞,+∞)内连续,且limx→∞f(x)存在,证明f(x)在(-∞,+∞)内有界
f(x)在(-∞,+∞)内连续,且limx→∞f(x)存在,证明f(x)在(-∞,+∞)内有界
若f(x)在[a,+∞)上连续,且limx→+∞f(x)存在,证明f(x)在[a,+∞)上有界
若f(x)在[a,+∞)上连续,且limx→+∞f(x)存在,证明f(x)在[a,+∞)上有界.
微积分 若f(x)在(-∞,+∞)内连续,且lim f(x)存在,则f(x)必在(-∞,+∞)x→∞内有界
证明:若函数f(x) 在(-∞,+∞) 内连续,且limf(x) 存在,则f(x) 必在(-∞,+∞) 内有界.
设f(x)在点x=0的某一邻域内具有二阶连续导数,且limx→0f(x)x=0,证明级数∞n=1f(1n)绝对收敛
一道函数有界性证明题证明:若f(x)在(-∞,+∞)内连续,且lim x->∞ f(x)存在,则f(x)必在(-∞,+∞
设f(x)在(a,b)内连续,且limx->a+f(x)=+无穷,limx->b-f(x)=-无穷,证明f(x)在(a,
F(x)在[a,+∞)上连续,且在正无穷极限存在,证明:F(x)在[a,+∞)上一致连续.
证明:若f(x)在(-∞.+∞)上连续,且limf (x)~∞存在,则f(x)必在(-∞.+∞)内有界
证明:设函数f(x)在区间(-∞,+∞)上连续,有lim(x→+∞)f(x)存在且有限.证明:f(x)在 (-∞,+∞)
若f(x)在[a,+∞)上连续,且limf(x)存在,证明:f(x)在[a,+∞)有界