已知AB分别是双曲线C X^2-Y^2=4的左右顶点,则P是双曲线上在第一象限内的任一点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:24:40
已知AB分别是双曲线C X^2-Y^2=4的左右顶点,则P是双曲线上在第一象限内的任一点
已知AB分别是双曲线C X^2-Y^2=4的左右顶点,则P是双曲线上在第一象限内的任意一点,角PBA与角PAB之差
已知AB分别是双曲线C X^2-Y^2=4的左右顶点,则P是双曲线上在第一象限内的任意一点,角PBA与角PAB之差
设p(x,y),则x>2,y>0
因为AB分别是双曲线C X^2-Y^2=4的左右顶点
所以A(-2.0)B(2,0)
设∠PBA=α,∠PAB=β
则α为钝角,β为锐角
sin(180°-α)=y/根号[(x-2)^2+y^2],cos(180°-α)=(x-2)/根号[(x-2)^2+y^2],
则sinα=sin(180°-α)=y/根号[(x-2)^2+y^2],
cosα=-cos(180°-α)=-(x-2)/根号[(x-2)^2+y^2],
sinβ==y/根号[(x+2)^2+y^2],
cosβ=(x+2)/根号[(x+2)^2+y^2],
所以sin(α-β)=sinαcosβ-cosαsinβ
={y/根号[(x-2)^2+y^2]}{(x+2)/根号[(x+2)^2+y^2]}-{-(x-2)/根号[(x-2)^2+y^2]}{y/根号[(x+2)^2+y^2]}=2xy/根号{[(x-2)^2+y^2][(x+2)^2+y^2]}
又X^2-Y^2=4
y=根号(x^2-4)
所以sin(α-β)=[2x根号(x^2-4)]/{[(x-2)^2+x^2-4][(x+2)^2+x^2-4]}=1
而0°
因为AB分别是双曲线C X^2-Y^2=4的左右顶点
所以A(-2.0)B(2,0)
设∠PBA=α,∠PAB=β
则α为钝角,β为锐角
sin(180°-α)=y/根号[(x-2)^2+y^2],cos(180°-α)=(x-2)/根号[(x-2)^2+y^2],
则sinα=sin(180°-α)=y/根号[(x-2)^2+y^2],
cosα=-cos(180°-α)=-(x-2)/根号[(x-2)^2+y^2],
sinβ==y/根号[(x+2)^2+y^2],
cosβ=(x+2)/根号[(x+2)^2+y^2],
所以sin(α-β)=sinαcosβ-cosαsinβ
={y/根号[(x-2)^2+y^2]}{(x+2)/根号[(x+2)^2+y^2]}-{-(x-2)/根号[(x-2)^2+y^2]}{y/根号[(x+2)^2+y^2]}=2xy/根号{[(x-2)^2+y^2][(x+2)^2+y^2]}
又X^2-Y^2=4
y=根号(x^2-4)
所以sin(α-β)=[2x根号(x^2-4)]/{[(x-2)^2+x^2-4][(x+2)^2+x^2-4]}=1
而0°
已知AB分别是双曲线C X^2-Y^2=4的左右顶点,则P是双曲线上在第一象限内的任一点
双曲线X^2-Y^2/4=1的左右两个焦点F1F2 第二象限内的一点P在双曲线上,求P点坐标
设双曲线C:x^2/a^2-y^2/b^2=1(a>0,b>0)的右焦点为F,P是C上在第一象限内的点,Q为双曲线左准线
如图,点P是直线y=12x+2与双曲线y=kx在第一象限内的一个交点,直线y=12x+2与x轴、y轴的交点分别为A、C,
已知点p是双曲线12x^2-4y^2=48上的一点,F1,F2分别是该双曲线的左右焦点,且
已知双曲线C:x^2/a^2/y^2/b^2=1的右焦点为F,P是第一象限C上的点,Q是第二象限上的点,O是坐标原点,若
双曲线的交点|如图,点P是直线y=1/2x+2与双曲线y=k/x在第一象限内的一个交点,直线y=1/2x+2与X轴、Y轴
已知双曲线x^2/a^2-y^2/b^2=1的左右焦点分别是F1,F2 点p在双曲线的右支上
设F为双曲线C:x^2/a^2-y^2/b^2的右焦点,P为第一象限内双曲线上的点,Q为x=-a^2/c上的点,O为坐标
已知直线AB交两坐标于A,B两点,且OA=OB=1,点P(a,b)是双曲线y=1/2x上在第一象限内的点,过点P作PM垂
已知点P是双曲线x^2/a^2-y^2/b^2=1,顶点外任一点,F1,F2为左右焦点,C为半焦距,△PF1F2内切圆与
已知F1.F2分别为双曲线x^2/9 - y^2/16 =1的左右两个焦点,且点P在双曲线上