作业帮 > 数学 > 作业

函数f(x)=ax³+bx²+cx(a≠0)为奇函数,则函数g(x)=ax²+bx+c是

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 14:45:37
函数f(x)=ax³+bx²+cx(a≠0)为奇函数,则函数g(x)=ax²+bx+c是
A奇函数B偶函数C既奇又偶函数D非奇非偶函数
函数f(x)=ax³+bx²+cx(a≠0)为奇函数,则函数g(x)=ax²+bx+c是
答案:B 偶函数 
因为 f(x)=ax^3+bx^2+cx 为奇函数
所以 f(-x)=-ax^3+bx^2-cx=-f(x)=-(ax^3+bx^2+cx)
即  bx^2=-bx^2
所以 b=0
所以 g(x)=ax2+bx+c=ax^2+c
g(-x)=a(-x)^2+c=ax^2+c=g(x)
所以 g(x)=ax2+bx+c是偶函数.