作业帮 > 数学 > 作业

如图,三角形abc中,AD是∠BAC的平分线,E,F分别是AB,AC上的点,且∠AED+∠AFD=180° 求证DE=D

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 19:04:12
如图,三角形abc中,AD是∠BAC的平分线,E,F分别是AB,AC上的点,且∠AED+∠AFD=180° 求证DE=DF
(1)求证:DE=DF
(2)若把条件∠AED+∠AFD=180°换成“DE=DF”,问,∠AED+∠AFD=180°吗,请说明理由.
如图,三角形abc中,AD是∠BAC的平分线,E,F分别是AB,AC上的点,且∠AED+∠AFD=180° 求证DE=D
1、证明:过点D作DM⊥AB于M,DN⊥AC于N
∵DM⊥AB,DN⊥AC
∴∠AMD=∠AND=90
∵AD平分∠BAC
∴DM=DN (角平分线性质)
∵∠AED+∠AFD=180, ∠AFD+∠CFD=180
∴∠AED=∠CFD
∴△DME≌△DNF
∴DE=DF
2、成立
证明:过点D作DM⊥AB于M,DN⊥AC于N
∵DM⊥AB,DN⊥AC
∴∠AMD=∠AND=90
∵AD平分∠BAC
∴DM=DN (角平分线性质)
∵DE=DF
∴△DME≌△DNF
∴∠AED=∠CFD
∵∠AFD+∠CFD=180
∴∠AED+∠AFD=180