设f(x)∈C[a,b],a
设f(x)∈C[a,b],a
设f∈C[A,B],a,b∈(A,B),证明:lim1\h ∫ (f(x+h)-f(x))dx=f(b)-f(a) (h
设奇函数f(x)=设奇函数f(x)=ax2+1/bx+c(a,b,c∈Z)满足f(1)=2,f(2)
12,设f(x)=x3+x,a,b,c∈R且a+b>0,b+c>0,a+c>0,则f(a)+f(b)+f(c)的值的符号
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0证明 存在c∈(a,b)使f‘(c)+f(c)
设f∈C[a,b],f(a)=f(b)=0,且f '(a)f '(b)>0,证明:存在x属于(a,b),使f(x)=0
微分中值定理证明题设f(x),g(x)在[a,b]上可导,并且g’(x) ≠0,证明存在c ∈(a,b)使得 (f(a)
设二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件
f(x)∈C[a,b]
若函数f(x)具有二阶导数,又设f(a)=f(c)=f(b),其中a
设函数f(X)在区间[a,b]上连续,且f(a)b.证明存在c属于(a,b),使得f(c)=c
设函数f(x)在[a,b]上连续,在(a,b)内有二阶导数,且有f(a)=f(b)=0,f(c)>0(a