如图,在平面直角坐标系中,点p从原点出发,沿x轴向右以每秒2个单位长度的速度运动t(t》0)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 19:14:41
如图,在平面直角坐标系中,点p从原点出发,沿x轴向右以每秒2个单位长度的速度运动t(t》0)
(1)把x=0,y=0代入y=-x2+bx+c中,得c=0,
再把x=2t,y=0代入y=-x2+bx中,得b=2t
故抛物线的解析式为y=-x2+2tx.
(2)∵t>0,
∴在点P和矩形ABCD开始运动时就经过矩形区域ABCD,
当抛物线经过点A时,将A(t+4,9)代入y=-x2+2tx中,得-(t+4)2+2t(t+4)=9,
整理,解方程得:t1=-5(舍去),t2=5,
即可得当t>5时,抛物线不在经过矩形区域ABCD,
综上可得t的范围为:0<t≤5,
(3)如图,当t=4秒时,此时点D和点P重合,抛物线的解析式为y=-x2+8x.
设直线MP的解析式为y=kx+b,
∵点M(4,16)和点P(8,0)在直线MP上,
∴
4k+b=16
8k+b=0
,
得
k=-4
b=32
,
∴直线MP的解析式为y=-4x+32;
设F(m,-4m+32),则E(m,-m2+8m),
∵点F在线段MP上运动,
∴4≤m≤8,
∴EF=-m2+8m-(-4m+32)=-m2+12m-32,
∴当m=-
b
2a
=6时,EF=
4ac-b2
4a
=
4×(-1)×(-32)-122
4×(-1)
=
16
4
=4,
∴线段EF的最大值是4.
再把x=2t,y=0代入y=-x2+bx中,得b=2t
故抛物线的解析式为y=-x2+2tx.
(2)∵t>0,
∴在点P和矩形ABCD开始运动时就经过矩形区域ABCD,
当抛物线经过点A时,将A(t+4,9)代入y=-x2+2tx中,得-(t+4)2+2t(t+4)=9,
整理,解方程得:t1=-5(舍去),t2=5,
即可得当t>5时,抛物线不在经过矩形区域ABCD,
综上可得t的范围为:0<t≤5,
(3)如图,当t=4秒时,此时点D和点P重合,抛物线的解析式为y=-x2+8x.
设直线MP的解析式为y=kx+b,
∵点M(4,16)和点P(8,0)在直线MP上,
∴
4k+b=16
8k+b=0
,
得
k=-4
b=32
,
∴直线MP的解析式为y=-4x+32;
设F(m,-4m+32),则E(m,-m2+8m),
∵点F在线段MP上运动,
∴4≤m≤8,
∴EF=-m2+8m-(-4m+32)=-m2+12m-32,
∴当m=-
b
2a
=6时,EF=
4ac-b2
4a
=
4×(-1)×(-32)-122
4×(-1)
=
16
4
=4,
∴线段EF的最大值是4.
如图,在平面直角坐标系中,点p从原点出发,沿x轴向右以每秒2个单位长度的速度运动t(t》0)
如图,在平面直角坐标系中,点P从原点出发,沿x轴向右以每秒2个单位长的速度运动t(t>0)秒,抛物线y=-x2+bx+c
如图15,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,
如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长得速度运动t秒(t大于0),抛物线y=x²
如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长得速度运动t秒(t大于0),
如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以毎秒1个单位长的速度运动t秒(t>0),抛物线y=x2+bx+c
一道二次函数题在平面直角坐标系中,点P从O点出发,沿X轴向右以每秒一个单位长度的速度运动t秒(t大于0)抛物线y=x^2
如图,线段AC在平面直角坐标系XOY中,已知A(8,0),若点C从原点出发,沿X轴向右以每秒1个单位速度运动,则点A
如图①,在平面直角坐标系中,点A从(1,0)出发以每秒1个单位长度的速度沿x轴方向运动
如图,平面直角坐标系中,点A的坐标为(-1,0).点P从原点O出发,沿x轴正方向以每秒1个单位长的速度运动,抛物线y=&
如图,在直角坐标系平面中,O为原点,A(0,6),B(8,0).点p从点A出发,以每秒2个单位长度的速度沿射线AO方向运
已知在平面直角坐标系中,点A(8,0),点B(0,8)动点P从原点出发以每秒1个单位的速度向X轴正方向运动,同时动点