已知方程f(x)=x3+ax2+bx+c=0的三个实根可分别作为一个椭圆,一双曲线,一抛物线的离心率
已知方程f(x)=x3+ax2+bx+c=0的三个实根可分别作为一个椭圆,一双曲线,一抛物线的离心率
已知方程x3+ax2+bx+c=0的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则a2+b2的取值范围是(
已知关于x的方程x3+ax2+bx+c=0的三个实根可作为一个椭圆、一条双曲线和一条抛物线的离心率,则b−1a+1
已知三次方程x3+ax2+2x+b=0有三个实数根,它们分别可作为抛物线、双曲线、椭圆的离心率,
已知函数f(x)=x3+ax2+bx+c,(a,b,c∈R)的一个零点为x=1,另外两个零点分别可作为椭圆和双曲线的离心
已知方程的三个实数跟可作为一个椭圆一个双曲线一个抛物线的离心率 则取值范围
关于x的方程2x^2+ax-5-2a=0的两实根可分别作为一个椭圆与一个双曲线的离心率,则实数a的取值范围是?
f(x)=x^3+ax^2+bx+c的一个零点为x=1,另外两个零点可分别作为椭圆和双曲线的离心率,则b/a取值范围?答
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点P(1,f(1))的切线方程为y=3x+1,且y=f(x)
已知函数f(x)=x3+ax2+bx+c,过曲线y=f(x)图象上点P(1,f(1))的切线方程为y=3x+1,且函数y
证明x1、X2分别为关于x的二次方程ax2+bx+c=0和-ax2+bx+c=0的一个非零实根
一道高一的代数证明题设x1、x2分别为关于x的一元二次方程ax2+bx+c=0和-ax2+bx+c=0的一个非零实根,且