已知过点A(0,1),且斜率为k的直线l与圆c(X-2)^2+(Y-3)^2=1,相交于M,N两点(2)求证:向量AM.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 15:15:14
已知过点A(0,1),且斜率为k的直线l与圆c(X-2)^2+(Y-3)^2=1,相交于M,N两点(2)求证:向量AM.向量AN=定值
直线l:y=kx+1
代入圆c(X-2)^2+(Y-3)^2=1
得:(x-2)^2+((kx-2)^2=1
即(1+k²)x²-(4+4k)x+7=0
需Δ=16(1+k)-28(1+k²)>0
设M(x1,y1),N(x2,y2)
则x1+x2=4(k+1)/(k²+1)
x1x2=7/(k²+1)
∴向量AM.向量AN
=(x1+y1-1)●(x2,y2-1)
=x1x2+(y1-1)(y2-1)
=x1x2+kx1*kx2
=(1+k²)x1x2
=(1+k²)*7/(1+k²)
=7
即向量AM.向量AN=定值7
法二:几何法
| AC|=2√2
过A向圆引切线AD
|AD|²=|AC|²-r²=8-1=7
根据切割线定理:
|AM||AN|=|AD|²=7
又向量AM,AN夹角为0
∴向量AM.向量AN=|AM||AN|=7
代入圆c(X-2)^2+(Y-3)^2=1
得:(x-2)^2+((kx-2)^2=1
即(1+k²)x²-(4+4k)x+7=0
需Δ=16(1+k)-28(1+k²)>0
设M(x1,y1),N(x2,y2)
则x1+x2=4(k+1)/(k²+1)
x1x2=7/(k²+1)
∴向量AM.向量AN
=(x1+y1-1)●(x2,y2-1)
=x1x2+(y1-1)(y2-1)
=x1x2+kx1*kx2
=(1+k²)x1x2
=(1+k²)*7/(1+k²)
=7
即向量AM.向量AN=定值7
法二:几何法
| AC|=2√2
过A向圆引切线AD
|AD|²=|AC|²-r²=8-1=7
根据切割线定理:
|AM||AN|=|AD|²=7
又向量AM,AN夹角为0
∴向量AM.向量AN=|AM||AN|=7
已知过点A(0,1),且斜率为k的直线l与圆c(X-2)^2+(Y-3)^2=1,相交于M,N两点(2)求证:向量AM.
已知过点A(0,1),斜率为K的直线L与圆C(X-2)^2+(Y-3)^2=1,相交于M,N两点,(1)求证向量AM×向
已知过点A(0,1)且斜率为k的直线l与圆c:(x-2)+(y-3)=1相交于M、N两点 1)求实数k取值范围.2)求证
过点A(0,1)且斜率为k的直线l与圆(x-2)^2+(y-3)^2=1,相交于mn两点,求证:向量AM乘以向量AN为定
已知过点A(0,1),且斜率为k的直线l与圆c:(x-2)^2+(y-3)^2=1,相交于M,N两点.1.求实数k的取值
已知y^2=4x,过点M(1,0)且斜率为k的直线l与抛物线C的准线相交于A点,与抛物线C的一个交点为B,若2AM向量=
已知过点A(0,1),且斜率为k的直线l与圆c:(x-2)^2+(y-3)^2=1,相交于M,N两点.
已知过点A(0,1)且斜率为k的直线l与圆c:(x-2)²+(y-3)²=1相交于M、N两点.
已知过点A(0,1)且斜率为k的直线l与圆c:(x-2)?+(y-3)?=1相交于M、N两点
已知过点A(0,1),且方向向量为a=(1,k)的直线l与圆C:(x-2)^2+(y-3)^2=1相交于M,N两点,
已知过点A(0,1),且方向向量为a=(1,k)的直线l与⊙C:(x-2)^2+(y-3)^2=1,相交于M,N两点.
已知过点A(0,1),且方向向量为a=(1,k)的直线l与圆C:(x-2)^2+(y-3)^2=1,相交与M,N两点