已知函数f(X)=根号(X²+a/X²-9)若f(X)的定义域为{X|X∈R,X≠0},求实数a的取
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 01:11:56
已知函数f(X)=根号(X²+a/X²-9)若f(X)的定义域为{X|X∈R,X≠0},求实数a的取值范围,
因为f(x)有根号,则要求满足X²+a/X²-9》0,而,而其定义域为{X|X∈R,X≠0},则说明在定义域的条件下,该不等式恒成立.
要求这种题目有两种方法,一种是函数法,另外一种是不等式恒成立法.
(1)先说不等式恒成立法,这种方法则要求被求的数能写成关于已经数的不等式,即:
从X²+a/X²-9》0,考虑到x^2>0,则不等式两边同乘以x^2,则有
a》-x^4+9x^2,为了要使得x在定义域内该不等式都恒成立,则a必须要大于等于-x^4+9x^2的最大值,
因此我们假设g(x)=-x^4+9x^2=-(x^2-9/2)^2+81/4,则可知x^2=9/2时,该式有最大值为81/4,因此有a》81/4.
(2)函数法,这种方法是一种通用的解题方法,一般针对于要求的那个未知数不能直接写出表达式的.具体如下:
X²+a/X²-9》0,考虑到x^2>0,不等式可以变为X^4-9x^2+a》0
则令g(x)=X^4-9x^2+a=(x^2-9/2)^2-81/4+a,该式要在定义域内恒大于0,则只需要最小值大于等于0即可,因此有-81/4+a》0,则a》81/4
要求这种题目有两种方法,一种是函数法,另外一种是不等式恒成立法.
(1)先说不等式恒成立法,这种方法则要求被求的数能写成关于已经数的不等式,即:
从X²+a/X²-9》0,考虑到x^2>0,则不等式两边同乘以x^2,则有
a》-x^4+9x^2,为了要使得x在定义域内该不等式都恒成立,则a必须要大于等于-x^4+9x^2的最大值,
因此我们假设g(x)=-x^4+9x^2=-(x^2-9/2)^2+81/4,则可知x^2=9/2时,该式有最大值为81/4,因此有a》81/4.
(2)函数法,这种方法是一种通用的解题方法,一般针对于要求的那个未知数不能直接写出表达式的.具体如下:
X²+a/X²-9》0,考虑到x^2>0,不等式可以变为X^4-9x^2+a》0
则令g(x)=X^4-9x^2+a=(x^2-9/2)^2-81/4+a,该式要在定义域内恒大于0,则只需要最小值大于等于0即可,因此有-81/4+a》0,则a》81/4
已知函数f(X)=根号(X²+a/X²-9)若f(X)的定义域为{X|X∈R,X≠0},求实数a的取
若函数f(x)=根号下(5-a)x²-6x+a+5的定义域为R,求实数a的取值范围
设a≠0,对于函数f(x)=log3(ax²-x+a),若定义域为R,求实数A的取值范围
若函数f(x)=根号【(a²-1)x²+(a-1)x+2/(a+1)】的定义域为R,求实数a的取值
已知函数f(x)=lg(ax+ax+1),若f(x)的定义域为R,求实数a的取值范围,若f(x)的值域为R,求实数a的取
已知函数f(x)=lg[(a²-1)x²+(a+1)x+1],若f(x)的定义域为R,求实数a的取值
高中一道导数题已知定义域为R的函数f(X)=ax-X*3在区间(0,根号2/2)上是增函数,求实数a的取值范围,若f(X
若函数f(x)的定义域为R,求实数a的取范围?谢谢
已知函数f(x)=x^2+a/c(x≠0,常数a∈R),若函数f(x)在x∈[2,+∞)上为增函数,求实数a的取值范围.
已知函数f(x)=lg[(a²-1)x²+(a+1)x+1],若其定义域为R,求实数a的取值范围
已知函数f(x)=lg[(a2-1)X^2+(a+1)X+1],若f(x)的定义域为R求实数a的取值范围
已知函数f(x)=lg(ax的平方+ax+1)若f(x)的定义域为R,求实数a的取值范围.