作业帮 > 数学 > 作业

如图,在梯形ABCD中,AB∥CD,对角线AC⊥BD,且AC=5cm,BD=12cm.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 00:07:35
如图,在梯形ABCD中,AB∥CD,对角线AC⊥BD,且AC=5cm,BD=12cm.

(1)求梯形中位线的长;
(2)求梯形的面积.
如图,在梯形ABCD中,AB∥CD,对角线AC⊥BD,且AC=5cm,BD=12cm.
(1)过D作DE∥AC,交BA的延长线于E,作DN⊥AB于N,
∵DC∥AB,DE∥CA,
∴四边形DCAE是平行四边形,
∴DE=AC=5cm,DC=AE,
∵AC⊥BD,DE∥AC,
∴BD⊥DE,
即∠EDB=90°,
∵在Rt△EDB中,由勾股定理得:BE=
DE2+BD2=
52+122=13(cm),
∴梯形ABCD的中位线是:
1
2(DC+AB)=
1
2BE=
1
2×13cm=6.5cm.
答:梯形的中位线是6.5cm.
(2)∵在Rt△EDB中,由三角形的面积公式得:
1
2DE×BD=
1
2BE×DN,
∴5×12=13DN,
∴DN=
60
13,
∴梯形ABCD的面积是:
1
2×(DC+AB)×DN=
1
2×13×
60
13=30(cm2),
答:梯形ABCD的面积是30cm2