已知函数f(x)=x2+bx+c(b,c∈R),g(x)=2x+b,且对于任意x∈R,恒有g(x)≤f(x).
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 17:15:26
已知函数f(x)=x2+bx+c(b,c∈R),g(x)=2x+b,且对于任意x∈R,恒有g(x)≤f(x).
(1)证明:c≥1,c≥|b|.
(2)设函数h(x)满足:f(x)+h(x)=(x+c)²,证明:函数h(x)在(0,+∞)上无零点
答的快答的好加赏
(1)证明:c≥1,c≥|b|.
(2)设函数h(x)满足:f(x)+h(x)=(x+c)²,证明:函数h(x)在(0,+∞)上无零点
答的快答的好加赏
f(x)-g(x)=x^2+(b-2)x+c-b>=0
因此delta=(b-2)^2-4(c-b)=b^2-4c+c=b^2/4+1>=1
c>=b^2/4+1>=2根号(b^2/4)=|b|
h(x)=(x+c)^2-f(x)=(2c-b)x+c^2-c=0
即h(x)在R上的唯一零点为x0=(c-c^2)/(2c-b)
因为c>=1,所以(c-c^2)=|b|,所以2c-b>0
所以0x=(c-c^2)/(2c-b)
因此delta=(b-2)^2-4(c-b)=b^2-4c+c=b^2/4+1>=1
c>=b^2/4+1>=2根号(b^2/4)=|b|
h(x)=(x+c)^2-f(x)=(2c-b)x+c^2-c=0
即h(x)在R上的唯一零点为x0=(c-c^2)/(2c-b)
因为c>=1,所以(c-c^2)=|b|,所以2c-b>0
所以0x=(c-c^2)/(2c-b)
已知函数f(x)=x2+bx+c(b,c∈R),g(x)=2x+b,且对于任意x∈R,恒有g(x)≤f(x).
已知函数f(x)=x2+bx+c,g(x)=2x+b,对任意的x∈R,恒有g(x)≤f(x).
已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f'(x)≤f(x).
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足:对于任意实数x,都有f(x)>=x, f(x)
已知函数f(x)=x^2+bx+c(b,c∈R),对任意x∈R,恒有2x+b≤f(x).证明当x≥0时,f(x)≤(x+
已知函数f(x)=ax2+bx+c(a≠0)满足f(0)=0,对于任意x∈R都有f(x)≥x,且 ,令g(x)=f(x)
设函数f(x)=x^3+bx^2+cx(x∈R),已知g(x)=f(x)-f `(x)是奇函数.求b,c.
已知在区间【1/2,2】上,函数f(x)=x2+bx+c(b,c∈R)与g(x)=(x2+x+1
f(x)=ax²+bx+c(a,b∈R) 若f(-1)=0,且对于任意函数x,f(x)≥0
高一数学函数难题已知函数f(x)=ax^2+bx+c(a,b,c∈R,a≠0),对于任意的x∈R,都有f(x-4)=f(
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)满足:f(-2)=0,对任意实数x,都有f(x)≥x,且当x∈
已知函数f(x)=ax^2+bx+c(a≠0)满足f(0)=0,对于任意x∈R都有f(x)≥x,且f(-1/2+x)=f