设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)*f(y),当x>0时,有0
设定义在R上的函数f(x),对任意x,y∈R有f(x+y)=f(x)+f(y0,且当x>0时,恒有f(x)>0若f(1)
设定义在R上的函数f(x),对任意x,y∈R,有f(x+y)=f(x)*f(y),且当x>0时,恒有f(x)>1.证明:
设f(x)是定义在R上的函数,对任意x,y∈R,都有f(x+y)=f(x)×f(y),当且只当x>0时,0<f(x)<1
设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)·f(y),当x>0时,有0
设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)*f(y),当x>0时,有0
设f(x)是定义在R上的函数,且对于任意x,y∈R,恒有f(x+y)=f(x)f(y),且当x>0时,f(x)>1.证明
设f(x)是定义域在R上的函数,对任意x,y ∈R,恒有f(x+y)=f(x)×f(y),当x>0时,有0<f(x)<1
函数的基本性质 设f(x)是定义在R上的函数,对于任意x,y∈R,恒有f(x+y)=f(x) X f(y),当x大于0时
设定义在R上的函数f(x),对任意x,y,有f(X+y)=f(x)*f(y),且当x>0时,恒有f(X)大于1,若f(1
设f(x)设f(x)是定义在R上的函数且对任意x,y属于R,恒有f(x+y)=f(x)f(y),且x>0时,0
设f(x)是定义在R上的函数,对任意x,y属于R ,恒有f(x+y)=f(x)=f(y).
设f(x)是定义在R上的函数且对任意x,y属于R,恒有f(x+y)=f(x)f(y),且x>0时,f(x)>1证明