作业帮 > 数学 > 作业

设f(x)是定义域在R上的函数,对任意x,y ∈R,恒有f(x+y)=f(x)×f(y),当x>0时,有0<f(x)<1

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 23:56:30
设f(x)是定义域在R上的函数,对任意x,y ∈R,恒有f(x+y)=f(x)×f(y),当x>0时,有0<f(x)<1
1)求证:f(0)=1,且当x>0时,f(x)>12)证明:f(x)在R上单调递减
设f(x)是定义域在R上的函数,对任意x,y ∈R,恒有f(x+y)=f(x)×f(y),当x>0时,有0<f(x)<1
1)令y=-x 由f(x+y)=f(x)f(y)可得f(x-x)=f(x)f(-x) ==>f(0)=f(x)f(-x) ==>f(x)f(-x)=1所以f(-x)=1/f(x)因为当x>0时 0<f(x)<1 取倒数可得1/f(x)>1因为f(-x)=1/f(x) 所以当x1 2)令y=-y 带入f(x+y)=f(x)×f(y)所以f(x-y)=f(x)f(-y) 因为由上题可得f(-y)=1/f(y)所以f(x-y)=f(x)/f(y)令x1x2 ==>x1-x21即f(x1)/f(x2)>1 ==>f(x1)>f(x2)所以f(x)在R上是减函数