如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:30:14
如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N.设AP=x.
(1)在△ABC中,AB=______;
(2)当x=______时,矩形PMCN的周长是14;
(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明.
(1)在△ABC中,AB=______;
(2)当x=______时,矩形PMCN的周长是14;
(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明.
(1)∵△ABC为直角三角形,且AC=8,BC=6,
∴AB=
AC2+BC2=
82+62=10.
(2)∵PM⊥AC PN⊥BC
∴MP∥BC AC∥PN(垂直于同一条直线的两条直线平行),
∴
PM
BC=
AP
AB,
PN
AC=
BP
AB
∵AP=x,AB=10,BC=6,AC=8,BP=10-x,
∴PM=
BC•AP
AB=
6
10x=
3
5x
PN=
AC•BP
AB=
8
10(10−x)=
4(10−x)
5=8-
4x
5
∴矩形PMCN周长=2(PM+PN)=2(
3
5x+8-
4
5x)=14.
∴x=5.
(3)∵PM⊥AC,PN⊥BC,
∴∠AMP=∠PNB=90°,
∴AC∥PN.
∴∠A=∠NPB.
∴△AMP∽△PNB.
∴当P为AB中点,即AP=PB时,△AMP≌△PNB,
此时,S△AMP=S△PNB=
1
2AM•MP=
1
2×4×3=6,
而矩形PMCN面积=PM•MC=3×4=12,
∴不存在能使得△PAM的面积、△PBN的面积与矩形PMCN面积同时相等的x的值.
∴AB=
AC2+BC2=
82+62=10.
(2)∵PM⊥AC PN⊥BC
∴MP∥BC AC∥PN(垂直于同一条直线的两条直线平行),
∴
PM
BC=
AP
AB,
PN
AC=
BP
AB
∵AP=x,AB=10,BC=6,AC=8,BP=10-x,
∴PM=
BC•AP
AB=
6
10x=
3
5x
PN=
AC•BP
AB=
8
10(10−x)=
4(10−x)
5=8-
4x
5
∴矩形PMCN周长=2(PM+PN)=2(
3
5x+8-
4
5x)=14.
∴x=5.
(3)∵PM⊥AC,PN⊥BC,
∴∠AMP=∠PNB=90°,
∴AC∥PN.
∴∠A=∠NPB.
∴△AMP∽△PNB.
∴当P为AB中点,即AP=PB时,△AMP≌△PNB,
此时,S△AMP=S△PNB=
1
2AM•MP=
1
2×4×3=6,
而矩形PMCN面积=PM•MC=3×4=12,
∴不存在能使得△PAM的面积、△PBN的面积与矩形PMCN面积同时相等的x的值.
如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边
如图,在三角形ABC中,角C=90度,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、B
在三角形ABC中,角C=90度,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),
如图,在三角形ABC中,角C=90度,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),
如图,在三角形abc中,∠c=90°ac=8 bc=6,p是ab边上的一个动点,过点p 做ac bc边的垂线,
如图,在等腰△ABC中,AB=BC=8cm,动点P从A点出发,沿AB向B移动.过点P作平行于BC、AC的直线,分别与AC
如图,在Rt△ABC中,∠A=90°,AB=AC=1,P是AB边上不与A点、B点重合的任意一个动点,PQ⊥BC于Q,QR
如图,在Rt△ABC中∠C=90°,BC=6,AC=8,点P是AB中点,点Q是边BC或AC上的一个动点,线段PQ把Rt△
在△ABC中,∠C=90°,AC=6,BC=8,M是BC的中点,P为线段AB上的一个动点(可以与A、B重合),并作∠MP
如图,已知△ABC中,∠BAC=90°,AB=AC,点P为BC边上一动点(BP<CP),分别过B、C作BE⊥AP于E,C
如图,在等腰直角三角形ABC中,∠B=90°,AB=BC=8cm,动点P从A出发沿AB向B移动,过点P作PQ‖AC,PR
如图,在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,E是在AC边上的一个动点(与点A、C不重合),DF⊥