证明题 设f(x)在区间[0,3]上连续,在区间(0,3)内可导,且f(0)+f(1)+f(3)=3,f(3)=1,试证
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 09:22:43
证明题 设f(x)在区间[0,3]上连续,在区间(0,3)内可导,且f(0)+f(1)+f(3)=3,f(3)=1,试证明必存在一点
ξ属于(0,3),使f导( ξ)=0
ξ属于(0,3),使f导( ξ)=0
f(0)+f(1)+f(3)=3,f(3)=1
则f(0)+f(1)=2
因此f(0)=f(1)=1,或f(0)1
若f(0)1由介值定理可知,在(0,1)上存在一点x1,使f(x1)=1
再加上f(0)=f(1)=1的情况,可知,在[ 0,1 ]上存在一点x1,使f(x1)=1
f(x1)=1=f(3)
因此由中值定理可知,在(x1,3)上存在一点ξ使得f '(ξ)=0
而在(x1,3)上的ξ必然在(0,3) 上
则f(0)+f(1)=2
因此f(0)=f(1)=1,或f(0)1
若f(0)1由介值定理可知,在(0,1)上存在一点x1,使f(x1)=1
再加上f(0)=f(1)=1的情况,可知,在[ 0,1 ]上存在一点x1,使f(x1)=1
f(x1)=1=f(3)
因此由中值定理可知,在(x1,3)上存在一点ξ使得f '(ξ)=0
而在(x1,3)上的ξ必然在(0,3) 上
证明题 设f(x)在区间[0,3]上连续,在区间(0,3)内可导,且f(0)+f(1)+f(3)=3,f(3)=1,试证
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足f(1)=3∫ e^(1-x^2) f(x) dx
设函数f(x)在闭区间「0,1」上连续,在(0,1)上可导,且f(0)=0,f(1)=1/3,
是一道关于微分中值定理的证明题,设函数f(x)在区间[0,3]上连续,在(0,3)内可导,且f(0)+ f(1)+ f(
设f(x)在区间[0,1]上连续,且满足f(x)=x²∫(0,1)f(t)dt+3,求∫(0,1)f(x)dx
大一高数题:设f(x)在闭区间[0,1]上连续,f(0)=0,f(1)=1,证明:存在ξ∈(0,1),使得f(ξ-1/3
设f(x)在区间[0,1]上连续,且f0)f(1)
设f(x)在闭区间[0,1]上连续,在开区间(0,1)上可导,且f(0)=f(1)=0,f(1/2)=1,证明:
设函数f(x)在闭区间【0.1】上连续,在【0.1】内可导,f(0)=0,f(1)=1,证明
设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +
高数证明题:设函数f(x)在区间[0,1]上连续,证明
大学微积分题.急求,设F(X)在闭区间(0,1)上连续,在开区间(0,1)内可导,且F(0)=F(1)=0,F(1/2)