设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +
设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +
设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
特急:设函数f(x)在区间[0,2a]上连续,证明:∫ f(x)dx)=∫ [f(x)+f(2a-x)]dx,
设函数f(x)连续 (1)证明:∫上a下-af(x)dx=1/2∫上a下-a[f(x)+f(-x)
设f‘(x)在[a,b]上连续,且f(a)=0,证明:|∫b a f(x)dx|
设函数f(x)在区间[a,b]上连续,证明:∫f(x)dx=f(a+b-x)dx
设 函数f(x)在区间(a b ) 上连续,则d /dx 求∫ b 上 a下 f(x) dx
设函数f(x)在闭区间[a,b]上具有二阶导数,且f"(x)>0,证明∫(a,b)f(x)dx>f(
设函数f(x)在区间【0,2a】上连续 且f(0)=f(2a),证明在【0,a】上至少有一点§
定积分的高数数学题设函数f(x)在区间[a,b]上连续,且f(x)>=0,若∫(b a)f(x)dx=0,证明f(x)恒
设函数F(X)在开区间(0,2a)上连续,且f(0)=f(2a),证明在零到A上至少存在一点X,使f(x)=f(a+x)
如果函数f(x)在区间[a,b]上连续且定积分{上限a,下限b}f(x)dx=0,证明在[a,b]上至少